5 research outputs found

    Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors

    Get PDF
    © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc. We conducted the first-in-human study of 18F-fluoroethyl triazole [Tyr3] octreotate (18F-FET-βAG-TOCA) in patients with neuroendocrine tumors (NETs) to evaluate biodistribution, dosimetry, and safety. Despite advances in clinical imaging, detection and quantification of NET activity remains a challenge, with no universally accepted imaging standard. Methods: Nine patients were enrolled. Eight patients had sporadic NETs, and 1 had multiple endocrine neoplasia type 1 syndrome. Patients received 137-163 MBq (mean ± SD, 155.7 ± 8 MBq) of 18F-FET-βAG-TOCA. Safety data were obtained during and 24 h after radioligand administration. Patients underwent detailed wholebody PET/CT multibed scanning over 4 h with sampling of venous bloods for radioactivity and radioactive metabolite quantification. Regions of interest were defined to derive individual and mean organ residence times; effective dose was calculated with OLINDA 1.1. Results: All patients tolerated 18F-FET-βAG-TOCA with no adverse events. Over 60% parent radioligand was present in plasma at 60 min. High tumor (primary and metastases)-to-background contrast images were observed. Physiologic distribution was seen in the pituitary, salivary glands, thyroid, and spleen, with low background distribution in the liver, an organ in which metastases commonly occur. The organs receiving highest absorbed dose were the gallbladder, spleen, stomach, liver, kidneys, and bladder. The calculated effective dose over all subjects (mean ± SD) was 0.029 ± 0.004 mSv/MBq. Conclusion: The favorable safety, imaging, and dosimetric profile makes 18F-FET-βAGTOCA a promising candidate radioligand for staging and management of NETs. Clinical studies in an expanded cohort are ongoing to clinically qualify this agent

    Bench to Bedside Development of [18F]Fluoromethyl-(1,2-2H4)choline ([18F]D4-FCH)

    Get PDF
    malignant transformation is characterised by aberrant phospholipid metabolism of cancers, associated with the upregulation of choline kinase alpha (CHK alpha). due to the metabolic instability of choline radiotracers and the increasing use of late-imaging protocols, we developed a more stable choline radiotracer, [F-18]fluoromethyl-[1,2-H-2(4)]choline ([F-18]D4-FCH). [F-18]D4-FCH has improved protection against choline oxidase, the key choline catabolic enzyme, via a H-1/D-2 isotope effect, together with fluorine substitution. Due to the promising mechanistic and safety profiles of [F-18]D4-FCH in vitro and preclinically, the radiotracer has transitioned to clinical development. [F-18]D4-FCH is a safe positron emission tomography (PET) tracer, with a favourable radiation dosimetry profile for clinical imaging. [F-18]D4-FCH PET/CT in lung and prostate cancers has shown highly heterogeneous intratumoral distribution and large lesion variability. treatment with abiraterone or enzalutamide in metastatic castrate-resistant prostate cancer patients elicited mixed responses on PET at 12-16 weeks despite predominantly stable radiological appearances. the sum of the weighted tumour-to-background ratios (TBRs-wsum) was associated with the duration of survival

    Bench to Bedside Development of [18F]Fluoromethyl-(1,2-2H4)choline ([18F]D4-FCH)

    Get PDF
    Malignant transformation is characterised by aberrant phospholipid metabolism of cancers, associated with the upregulation of choline kinase alpha (CHKα). Due to the metabolic instability of choline radiotracers and the increasing use of late-imaging protocols, we developed a more stable choline radiotracer, [18F]fluoromethyl-[1,2-2H4]choline ([18F]D4-FCH). [18F]D4-FCH has improved protection against choline oxidase, the key choline catabolic enzyme, via a 1H/2D isotope effect, together with fluorine substitution. Due to the promising mechanistic and safety profiles of [18F]D4-FCH in vitro and preclinically, the radiotracer has transitioned to clinical development. [18F]D4-FCH is a safe positron emission tomography (PET) tracer, with a favourable radiation dosimetry profile for clinical imaging. [18F]D4-FCH PET/CT in lung and prostate cancers has shown highly heterogeneous intratumoral distribution and large lesion variability. Treatment with abiraterone or enzalutamide in metastatic castrate-resistant prostate cancer patients elicited mixed responses on PET at 12–16 weeks despite predominantly stable radiological appearances. The sum of the weighted tumour-to-background ratios (TBRs-wsum) was associated with the duration of survival

    Somatostatin Receptor PET/MR Imaging of Inflammation in Patients With Large Vessel Vasculitis and Atherosclerosis.

    Get PDF
    BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-βAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810)
    corecore