103 research outputs found

    Age-Related Tau Burden and Cognitive Deficits Are Attenuated in KLOTHO KL-VS Heterozygotes

    Get PDF
    Background: Identification of new genetic variants that modify Alzheimer’s disease (AD) risk will elucidate novel targets for curbing the disease progression or delaying symptom onset. Objective: To examine whether the functionally advantageous KLOTHO gene KL-VS variant attenuates age-related alteration in cerebrospinal fluid (CSF) biomarkers or cognitive function in middle-aged and older adults enriched for AD risk. Methods: Sample included non-demented adults (N = 225, mean age = 63±8, 68% women) from the Wisconsin Registry for Alzheimer’s Prevention and the Wisconsin Alzheimer’s Disease Research Center who were genotyped for KL-VS, underwent CSF sampling and had neuropsychological testing data available proximal to CSF draw. Covariate-adjusted multivariate regression examined relationships between age group (Younger versus Older; mean split at 63 years), AD biomarkers, and neuropsychological performance tapping memory and executive function, and whether these relationships differed between KL-VS non-carriers (KL-VSNC) and heterozygote (KL-VSHET). Results: In the pooled analyses, older age was associated with higher levels of total tau (tTau), phosphorylated tau (pTau), and their respective ratios to amyloid-β (Aβ)42 (ps ≤ 0.002), and with poorer performance on neuropsychological tests (ps ≤ 0.001). In the stratified analyses, KL-VSNC exhibited this age-related pattern of associations with CSF biomarkers (all ps ≤ 0.001), and memory and executive function (ps ≤ 0.003), which were attenuated in KL-VSHET (ps ≥ 0.14). Conclusion: Worse memory and executive function, and higher tau burden with age were attenuated in carriers of a functionally advantageous KLOTHO variant. KL-VS heterozygosity seems to be protective against age-related cognitive and biomolecular alterations that confer risk for AD

    Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Get PDF
    BACKGROUND: Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. RESULTS: In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E(2 )pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. CONCLUSION: Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms

    Attenuated Inflammatory Response in Aged Mice Brains following Stroke

    Get PDF
    Background: Increased age is a major risk factor for stroke incidence, post-ischemic mortality, and severe and long-term disability. Stroke outcome is considerably influenced by post-ischemic mechanisms. We hypothesized that the inflammatory response following an ischemic injury is altered in aged organisms. Methods and Results: To that end, we analyzed the expression pattern of pro-inflammatory cytokines (TNF, IL-1a, IL-1b, IL-6), anti-inflammatory cytokines (IL-10, TGFb1), and chemokines (Mip-1a, MCP-1, RANTES) of adult (2 months) and aged (24 months) mice brains at different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d) following transient occlusion of the middle cerebral artery. The infarct size was assessed to monitor possible consequences of an altered inflammatory response in aged mice. Our data revealed an increased neuro-inflammation with age. Above all, we found profound age-related alterations in the reaction to stroke. The response of pro-inflammatory cytokines (TNF, and IL-1b) and the level of chemokines (Mip-1a, and MCP-1) were strongly diminished in the aged post-ischemic brain tissue. IL-6 showed the strongest age-dependent decrease in its post-ischemic expression profile. Anti-inflammatory cytokines (TGFb1, and IL-10) revealed no significant age dependency after ischemia. Aged mice brains tend to develop smaller infarcts. Conclusion: The attenuated inflammatory response to stroke in aged animals may contribute to their smaller infarcts. The results presented here highlight the importance of using aged animals to investigate age-associated diseases like stroke

    Steroid Concentrations in Plasma, Whole Blood and Brain: Effects of Saline Perfusion to Remove Blood Contamination from Brain

    Get PDF
    The brain and other organs locally synthesize steroids. Local synthesis is suggested when steroid levels are higher in tissue than in the circulation. However, measurement of both circulating and tissue steroid levels are subject to methodological considerations. For example, plasma samples are commonly used to estimate circulating steroid levels in whole blood, but steroid levels in plasma and whole blood could differ. In addition, tissue steroid measurements might be affected by blood contamination, which can be addressed experimentally by using saline perfusion to remove blood. In Study 1, we measured corticosterone and testosterone (T) levels in zebra finch (Taeniopygia guttata) plasma, whole blood, and red blood cells (RBC). We also compared corticosterone in plasma, whole blood, and RBC at baseline and after 60 min restraint stress. In Study 2, we quantified corticosterone, dehydroepiandrosterone (DHEA), T, and 17β-estradiol (E2) levels in the brains of sham-perfused or saline-perfused subjects. In Study 1, corticosterone and T concentrations were highest in plasma, significantly lower in whole blood, and lowest in RBC. In Study 2, saline perfusion unexpectedly increased corticosterone levels in the rostral telencephalon but not other regions. In contrast, saline perfusion decreased DHEA levels in caudal telencephalon and diencephalon. Saline perfusion also increased E2 levels in caudal telencephalon. In summary, when comparing local and systemic steroid levels, the inclusion of whole blood samples should prove useful. Moreover, blood contamination has little or no effect on measurement of brain steroid levels, suggesting that saline perfusion is not necessary prior to brain collection. Indeed, saline perfusion itself may elevate and lower steroid concentrations in a rapid, region-specific manner

    Selected heterozygosity at cis-regulatory sequences increases the expression homogeneity of a cell population in humans

    Get PDF
    Background: Examples of heterozygote advantage in humans are scarce and limited to protein-coding sequences. Here, we attempt a genome-wide functional inference of advantageous heterozygosity at cis-regulatory regions. Results: The single-nucleotide polymorphisms bearing the signatures of balancing selection are enriched in active cis-regulatory regions of immune cells and epithelial cells, the latter of which provide barrier function and innate immunity. Examples associated with ancient trans-specific balancing selection are also discovered. Allelic imbalance in chromatin accessibility and divergence in transcription factor motif sequences indicate that these balanced polymorphisms cause distinct regulatory variation. However, a majority of these variants show no association with the expression level of the target gene. Instead, single-cell experimental data for gene expression and chromatin accessibility demonstrate that heterozygous sequences can lower cell-to-cell variability in proportion to selection strengths. This negative correlation is more pronounced for highly expressed genes and consistently observed when using different data and methods. Based on mathematical modeling, we hypothesize that extrinsic noise from fluctuations in transcription factor activity may be amplified in homozygotes, whereas it is buffered in heterozygotes. While high expression levels are coupled with intrinsic noise reduction, regulatory heterozygosity can contribute to the suppression of extrinsic noise. Conclusions: This mechanism may confer a selective advantage by increasing cell population homogeneity and thereby enhancing the collective action of the cells, especially of those involved in the defense systems in humansope

    Beneficial Effects of Estrogen in a Mouse Model of Cerebrovascular Insufficiency

    Get PDF
    BACKGROUND: The M(5) muscarinic acetylcholine receptor is known to play a crucial role in mediating acetylcholine dependent dilation of cerebral blood vessels. Previously, we reported that male M(5) muscarinic acetylcholine knockout mice (M5R(-/-) mice) suffer from a constitutive constriction of cerebral arteries, reduced cerebral blood flow, dendritic atrophy, and short-term memory loss, without necrosis and/or inflammation in the brain. METHODOLOGY/PRINCIPAL FINDINGS: We employed the Magnetic Resonance Angiography to study the area of the basilar artery in male and female M5R(-/-) mice. Here we show that female M5R(-/-) mice did not show the reduction in vascular area observed in male M5R(-/-) mice. However, ovariectomized female M5R(-/-) mice displayed phenotypic changes similar to male M5R(-/-) mice, strongly suggesting that estrogen plays a key role in the observed gender differences. We found that 17beta-estradiol (E2) induced nitric oxide release and ERK activation in a conditional immortalized mouse brain cerebrovascular endothelial cell line. Agonists of ERalpha, ERbeta, and GPR30 promoted ERK activation in this cell line. Moreover, in vivo magnetic resonance imaging studies showed that the cross section of the basilar artery was restored to normal in male M5R(-/-) mice treated with E2. Treatment with E2 also improved the performance of male M5R(-/-) mice in a cognitive test and reduced the atrophy of neural dendrites in the cerebral cortex and hippocampus. M5R(-/-) mice also showed astrocyte swelling in cortex and hippocampus using the three-dimensional reconstruction of electron microscope images. This phenotype was reversed by E2 treatment, similar to the observed deficits in dendrite morphology and the number of synapses. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that M5R(-/-) mice represent an excellent novel model system to study the beneficial effects of estrogen on cerebrovascular function and cognition. E2 may offer new therapeutic perspectives for the treatment of cerebrovascular insufficiency related memory dysfunction

    An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model

    Get PDF
    We previously showed that middle-aged female rats sustain a larger infarct following experimental stroke as compared to younger female rats, and paradoxically, estrogen treatment to the older group is neurotoxic. Plasma and brain insulin-like growth factor-1 (IGF-1) levels decrease with age. However, IGF-1 infusion following stroke, prevents estrogen neurotoxicity in middle-aged female rats. IGF1 is neuroprotective and well tolerated, but also has potentially undesirable side effects. We hypothesized that microRNAs (miRNAs) that target the IGF-1 signaling family for translation repression could be alternatively suppressed to promote IGF-1-like neuroprotection. Here, we report that two conserved IGF pathway regulatory microRNAs, Let7f and miR1, can be inhibited to mimic and even extend the neuroprotection afforded by IGF-1. Anti-mir1 treatment, as late as 4 hours following ischemia, significantly reduced cortical infarct volume in adult female rats, while anti-Let7 robustly reduced both cortical and striatal infarcts, and preserved sensorimotor function and interhemispheric neural integration. No neuroprotection was observed in animals treated with a brain specific miRNA unrelated to IGF-1 (anti-miR124). Remarkably, anti-Let7f was only effective in intact females but not males or ovariectomized females indicating that the gonadal steroid environment critically modifies miRNA action. Let7f is preferentially expressed in microglia in the ischemic hemisphere and confirmed in ex vivo cultures of microglia obtained from the cortex. While IGF-1 was undetectable in microglia harvested from the non-ischemic hemisphere, IGF-1 was expressed by microglia obtained from the ischemic cortex and was further elevated by anti-Let7f treatment. Collectively these data support a novel miRNA-based therapeutic strategy for neuroprotection following stroke
    corecore