7 research outputs found

    Circulating Tumor DNA as a Sensitive Marker in Patients Undergoing Irreversible Electroporation for Pancreatic Cancer

    Get PDF
    Background/Aims: Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in extremely poor 5-year survival. Late diagnosis of PDAC is mainly due to lack of a reliable method of early detection. Carbohydrate antigen (CA) 19-9 is often used as a tumor biomarker in PDAC; however, the test lacks sensitivity and specificity. Therefore, new sensitive and minimally invasive diagnostic tools are required to detect pancreatic cancer. Methods: Here, we investigated circulating tumor DNA (ctDNA) which contained KRAS-mutated as a potential diagnostic tool for PDAC patients who underwent irreversible electroporation (IRE). We used droplet digital polymerase chain reaction (ddPCR) to detect the expression of KRAS-mutated genes in plasma samples of 65 PDAC patients who underwent IRE. Results: In these 65 cases, ctDNA was detected in 20 (29.2%) samples. The median overall survival (OS) was 11.4 months with ctDNA+ patients and 14.3 months for ctDNA- patients. ctDNA+ patients had a obviously poorer prognosis associated to overall survival (P < 0.001). Conclusion: Our results suggested that the existence of ctDNA was a predictor of survival for PDAC patients. Therefore, ctDNA may be a new sensitive biomarker for monitoring treatment outcome in PDAC

    The characteristics of ctDNA reveal the high complexity in matching the corresponding tumor tissues

    No full text
    Abstract Background Next-generation sequencing (NGS) is an efficient and sensitive method to detect mutations from ctDNA. Many features and clinical conditions could significantly affect the concordance between ctDNA and corresponding tumor tissues. Our goal was to systematically investigate the critical factors contributing to different concordance between ctDNA and corresponding tumor tissues. Methods We recruited two groups of IIIB or IV lung cancer patients: The standard group to evaluate the accuracy of our method and the concordance between ctDNA and tumor tissues, and the study group with various clinical conditions. We applied our unique identification (UID) indexed capturing-based sequencing (UC-Seq) to ctDNA samples, and confirm the results by Droplet digital PCR (ddPCR). Results Considering mutations detected from NGS of tumor tissues as golden standard, UC-Seq achieved overall 93.6% sensitivity for SNVs and Indels, and 0.8 Pearson correlation between tumor TMB and bTMB. Efficacious treatments, long sampling date (more than 2 weeks) between tumor tissues and ctDNA and low concentrations of cfDNA (less than 9 ng/ml) could significantly decrease the concordance between ctDNA and tumor tissues. About 84% mutations showed shorter mutant fragment length than that of wild-type fragments, and the AFs of mutations could be significantly enriched in small-size ctDNA. Conclusions In late-stage lung cancer patients, ctDNA generally has high concordance with tumor tissues. However it could be significantly affected by three clinical conditions which could dynamically change the content of ctDNA. Moreover, the detection limit could be further extended by enriching small-size ctDNA in the preparation of samples

    Additional file 2: of The characteristics of ctDNA reveal the high complexity in matching the corresponding tumor tissues

    No full text
    Figure S2. The sensitivity of copy gain detection was affected by the copy gain ratio in corresponding tumor tissues. (A) The curve of sensitivity varied with the decreasing of the copy gain ratio cut-offs in corresponding tumor tissues. (B) Scatter plot of maximum MAFs in ctDNA versus copy gain ratio in corresponding tumor tissues. (PDF 868 kb
    corecore