318 research outputs found

    H2S Donor, S-Propargyl-Cysteine, Increases CSE in SGC-7901 and Cancer-Induced Mice: Evidence for a Novel Anti-Cancer Effect of Endogenous H2S?

    Get PDF
    Background: S-propargyl-cysteine (SPRC), an H2S donor, is a structural analogue of S-allycysteine (SAC). It was investigated for its potential anti-cancer effect on SGC-7901 gastric cancer cells and the possible mechanisms that may be involved. Methods and Findings: SPRC treatment significantly decreased cell viability, suppressed the proliferation and migration of SPRC-7901 gastric cancer cells, was pro-apoptotic as well as caused cell cycle arrest at the G 1/S phase. In an in vivo study, intra-peritoneal injection of 50 mg/kg and 100 mg/kg of SPRC significantly reduced tumor weights and tumor volumes of gastric cancer implants in nude mice, with a tumor growth inhibition rate of 40–75%. SPRC also induced a pro-apoptotic effect in cancer tissues and elevated the expressions of p53 and Bax in tumors and cells. SPRC treatment also increased protein expression of cystathione-c-lyase (CSE) in cells and tumors, and elevated H 2S levels in cell culture media, plasma and tumoral CSE activity of gastric cancer-induced nude mice by 2, 2.3 and 1.4 fold, respectively. Most of the anti-cancer functions of SPRC on cells and tumors were significantly suppressed by PAG, an inhibitor of CSE activity. Conclusions: Taken together, the results of our study provide insights into a novel anti-cancer effect of H2S as well as o

    Observations on Copy Number Variations in a Kidney-yang Deficiency Syndrome Family

    Get PDF
    We have performed an analysis of a family with kidney-yang deficiency syndrome (KDS) in order to determine the structural genomic variations through a novel approach designated as “copy number variants” (CNVs). Twelve KDS subjects and three healthy spouses from this family were included in this study. Genomic DNA samples were genotyped utilizing an Affymetrix 100 K single nucleotide polymorphism array, and CNVs were identified by Copy Number Algorithm (CNAT4.0, Affymetrix). Our results demonstrate that 447 deleted and 476 duplicated CNVs are shared among KDS subjects within the family. The homologus ratio of deleted CNVs was as high as 99.78%. One-copy-duplicated CNVs display mid-range homology. For two copies of duplicated CNVs (CNV4), a markedly heterologous ratio was observed. Therefore, with the important exception of CNV4, our data shows that CNVs shared among KDS subjects display typical Mendelian inheritance. A total of 113 genes with established functions were identified from the CNV flanks; significantly enriched genes surrounding CNVs may contribute to certain adaptive benefit. These genes could be classified into categories including: binding and transporter, cell cycle, signal transduction, biogenesis, nerve development, metabolism regulation and immune response. They can also be included into three pathways, that is, signal transduction, metabolic processes and immunological networks. Particularly, the results reported here are consistent with the extensive impairments observed in KDS patients, involving the mass-energy-information-carrying network. In conclusion, this article provides the first set of CNVs from KDS patients that will facilitate our further understanding of the genetic basis of KDS and will allow novel strategies for a rational therapy of this disease

    Tumor Tissue-Derived Formaldehyde and Acidic Microenvironment Synergistically Induce Bone Cancer Pain

    Get PDF
    Background: There is current interest in understanding the molecular mechanisms of tumor-induced bone pain. Accumulated evidence shows that endogenous formaldehyde concentrations are elevated in the blood or urine of patients with breast, prostate or bladder cancer. These cancers are frequently associated with cancer pain especially after bone metastasis. It is well known that transient receptor potential vanilloid receptor 1 (TRPV1) participates in cancer pain. The present study aims to demonstrate that the tumor tissue-derived endogenous formaldehyde induces bone cancer pain via TRPV1 activation under tumor acidic environment. Methodology/Principal Findings: Endogenous formaldehyde concentration increased significantly in the cultured breast cancer cell lines in vitro, in the bone marrow of breast MRMT-1 bone cancer pain model in rats and in tissues from breast cancer and lung cancer patients in vivo. Low concentrations (1 similar to 5 mM) of formaldehyde induced pain responses in rat via TRPV1 and this pain response could be significantly enhanced by pH 6.0 (mimicking the acidic tumor microenvironment). Formaldehyde at low concentrations (1 mM to 100 mM) induced a concentration-dependent increase of [Ca(2+)]i in the freshly isolated rat dorsal root ganglion neurons and TRPV1-transfected CHO cells. Furthermore, electrophysiological experiments showed that low concentration formaldehyde-elicited TRPV1 currents could be significantly potentiated by low pH (6.0). TRPV1 antagonists and formaldehyde scavengers attenuated bone cancer pain responses. Conclusions/Significance: Our data suggest that cancer tissues directly secrete endogenous formaldehyde, and this formaldehyde at low concentration induces metastatic bone cancer pain through TRPV1 activation especially under tumor acidic environment.Multidisciplinary SciencesSCI(E)PubMed24ARTICLE4e10234

    Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment

    Get PDF
    Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer

    Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Get PDF
    BACKGROUND: The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. METHODS: The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma) of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE), followed by direct DNA sequencing to identify the mutations. RESULTS: Fourteen somatic mtDNA mutations were identified in 55% (11/20) of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64%) were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. CONCLUSION: Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations

    Sarcandra glabra

    Get PDF
    Sarcandra glabra, as a type of “antipyretic-detoxicate drugs”, has always been widely used in traditional Chinese medicine (TCM). The Sarcandra glabra extract (SGE) is applied frequently as anti-inflammatory and anti-infectious drug in folk medicine. However, relative experiment data supporting this effective clinical consequence was limited. In order to mimic the physiological conditions of the susceptible population, we employed restraint stress mouse model to investigate the effect of SGE against influenza. Mice were infected with influenza virus three days after restraint, while SGE was orally administrated for 10 consecutive days. Body weight, morbidity, and mortality were recorded daily. Histopathologic changes, susceptibility genes expressions and inflammatory markers in lungs were determined. Our results showed that restraint stress significantly increased susceptibility and severity of influenza virus. However, oral administration of SGE could reduce morbidity, mortality and significantly prolonged survival time. The results further showed that SGE had a crucial effect on improving susceptibility markers levels to recover the balance of host defense system and inhibiting inflammatory cytokines levels through down-regulation of NF-κB protein expression to ameliorate the lung injury. These data showed that SGE reduced the susceptibility and severity of influenza

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al
    corecore