83 research outputs found

    The Contribution Of Occupancy Behavior To Energy Consumption In Low Income Residential Buildings

    Get PDF
    Energy consumption in residential buildings consumes 22% of the total US energy each year and is highly impacted by the occupant behavior. In order to model domestic demand profiles more accurately, it is important to understand occupancy behavior profile. Four low income houses in Texas are used as the test beds. The occupancy sensors are installed in every room. The real-life occupancy data from the occupancy sensors were compared with the American Time Use Survey (ATUS) data. The study period is from July 1 to August 31. The preliminary result shows that there is a similarity between ATUS data and actual occupancy profile. In addition, simulations in EnergyPlus were conducted to test how much energy consumption can be saved based on the thermostat control of real-life occupancy behavior patterns. The results show that such control can save cooling energy by 7%

    Designing non-segregating granular mixtures

    Full text link
    In bidisperse particle mixtures varying in size or density alone, large particles rise (driven by percolation) and heavy particles sink (driven by buoyancy). When the two particle species differ from each other in both size and density, the two segregation mechanisms either enhance (large/light and small/heavy) or oppose (large/heavy and small/light) each other. In the latter case, an equilibrium condition exists in which the two segregation mechanisms balance and the particles no longer segregate. This leads to a methodology to design non-segregating particle mixtures by specifying particle size ratio, density ratio, and mixture concentration to achieve the equilibrium condition. Using DEM simulations of quasi-2D bounded heap flow, we show that segregation is significantly reduced for particle mixtures near the equilibrium condition. In addition, the rise-sink transition for a range of particle size and density ratios matches the combined size and density segregation model predictions

    Minimum Width of Leaky-ReLU Neural Networks for Uniform Universal Approximation

    Full text link
    The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width wmin=max(dx,dy)w^*_{\min}=\max(d_x,d_y), where dxd_x and dyd_y are the dimensions of the input and output, respectively. Recently, \cite{cai2022achieve} shows that a leaky-ReLU NN with this critical width can achieve UAP for LpL^p functions on a compact domain KK, \emph{i.e.,} the UAP for Lp(K,Rdy)L^p(K,\mathbb{R}^{d_y}). This paper examines a uniform UAP for the function class C(K,Rdy)C(K,\mathbb{R}^{d_y}) and gives the exact minimum width of the leaky-ReLU NN as wmin=max(dx+1,dy)+1dy=dx+1w_{\min}=\max(d_x+1,d_y)+1_{d_y=d_x+1}, which involves the effects of the output dimensions. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory.Comment: ICML2023 camera read

    A Lumped-Charge Approach Based Physical SPICE-Model for High Power Soft-Punch Through IGBT

    Get PDF

    C-SURE: Shrinkage Estimator and Prototype Classifier for Complex-Valued Deep Learning

    Full text link
    The James-Stein (JS) shrinkage estimator is a biased estimator that captures the mean of Gaussian random vectors.While it has a desirable statistical property of dominance over the maximum likelihood estimator (MLE) in terms of mean squared error (MSE), not much progress has been made on extending the estimator onto manifold-valued data. We propose C-SURE, a novel Stein's unbiased risk estimate (SURE) of the JS estimator on the manifold of complex-valued data with a theoretically proven optimum over MLE. Adapting the architecture of the complex-valued SurReal classifier, we further incorporate C-SURE into a prototype convolutional neural network (CNN) classifier. We compare C-SURE with SurReal and a real-valued baseline on complex-valued MSTAR and RadioML datasets. C-SURE is more accurate and robust than SurReal, and the shrinkage estimator is always better than MLE for the same prototype classifier. Like SurReal, C-SURE is much smaller, outperforming the real-valued baseline on MSTAR (RadioML) with less than 1 percent (3 percent) of the baseline sizeComment: Submitted to CVPR PBVS worksho

    Quantum NETwork: from theory to practice

    Full text link
    The quantum internet is envisioned as the ultimate stage of the quantum revolution, which surpasses its classical counterpart in various aspects, such as the efficiency of data transmission, the security of network services, and the capability of information processing. Given its disruptive impact on the national security and the digital economy, a global race to build scalable quantum networks has already begun. With the joint effort of national governments, industrial participants and research institutes, the development of quantum networks has advanced rapidly in recent years, bringing the first primitive quantum networks within reach. In this work, we aim to provide an up-to-date review of the field of quantum networks from both theoretical and experimental perspectives, contributing to a better understanding of the building blocks required for the establishment of a global quantum internet. We also introduce a newly developed quantum network toolkit to facilitate the exploration and evaluation of innovative ideas. Particularly, it provides dual quantum computing engines, supporting simulations in both the quantum circuit and measurement-based models. It also includes a compilation scheme for mapping quantum network protocols onto quantum circuits, enabling their emulations on real-world quantum hardware devices. We showcase the power of this toolkit with several featured demonstrations, including a simulation of the Micius quantum satellite experiment, a testing of a four-layer quantum network architecture with resource management, and a quantum emulation of the CHSH game. We hope this work can give a better understanding of the state-of-the-art development of quantum networks and provide the necessary tools to make further contributions along the way.Comment: 36 pages, 33 figures; comments are welcom
    corecore