316 research outputs found

    EFFECTS OF HEALTH EDUCATION BASED ON OMAHA SYSTEM ON ANXIETY, DEPRESSION AND SELF-MANAGEMENT ABILITY OF PRIMIPARA

    Get PDF
    Background: Primiparas are prone to tension, anxiety, depression and other emotions due to their lack of experience related to delivery and fear of the unknown during pregnancy. Meanwhile, their self-management ability decreases because of their failure to immediately adapt to the transformation of their roles in a short time. A nursing model was constructed in this study based on the combination of the Omaha System with PBL health education to examine the effect of this model on the anxiety, depression, quality of life and self-management ability of primiparas. Subjects and methods: From January to December 2020, 170 primiparas were recruited as volunteers in this study by means of voluntary registration. They were randomly divided into the observation group and the control group, with 85 members in each group. The intervention lasted 6 weeks. SDS, SAS, WHOQOL-BREF scale and ESCA scale were used to compare the scores of the two groups before and after the intervention. Results: (1) After the intervention, the changes of the observation group in self-management ability and its four dimensions are higher than those of the control group, with the differences being statistically significant (P<0.05). (2) After the intervention, the changes of the observation group in quality of life and its four dimensions are higher than those of the control group, with the differences being statistically significant (P<0.05). (3) The changes of the observation group in anxiety and depression are higher than those of the control group. Specifically, the change of the observation group in anxiety before and after the intervention is 6.40+5.61, in comparison with 2.67+3.71 in the control group; the change of the observation group in depression before and after the intervention is 9.07+8.42 in comparison with 3.19+7.06 in the control group. Conclusion: the new nursing method proposed in this study effectively improves the self-management ability and quality of life of primiparas, significantly reduces their anxiety and depression, has a high application value in obstetric nursing and also provides a new idea for the implementation of scientific and efficient nursing for primiparas

    Acute lung injury inhibition by juglone in LPS induced sepsis mouse model involves Sirt1 activation

    Get PDF
    Purpose: To investigate the effect of juglone on LPS induced lung injury in a mouse model and in TC 1cell line.Methods: Edema formation in lungs were measured by determination of lung wet/dry weight. Expressions of various proteins were assessed by western blot assay, while Sirt1 level was assessed using immunohistochemistry. Mice were randomly assigned to nine groups of 10 mice each: normal control, untreated and seven juglone treatment groups. Acute lung injury was induced in mice by injecting LPS (10 mg/kg) via intraperitoneal route (ip). The treatment groups were given 10, 20, 30, 40, 50, 60 and 100 μM of juglone, ip, respectively.Results: The levels of MMP-9, IL-6, IL-1β and iNOS were significantly higher in acute lung injury induced mice compared than the control group (p &lt; 0.05). Treatment of the mice with juglone significantly decreased LPS-induced up-regulation of inflammatory cytokines in a dose-dependentmanner. The production of inflammatory cytokines was almost completely inhibited in the mice treated with 100 mg/kg dose of juglone, while treatment of the LPS-stimulated TC 1 cells with juglone upregulated the expression of Sirt1 mRNA. Down-regulation of Sirt1 expression by siRNA inhibited the effect of juglone on LPS-induced increase in inflammatory cytokine production.Conclusion: Juglone prevents lung injury in mice via up-regulation of Sirt1 expression. Therefore, juglone might be useful for the development of a treatment strategy for lung injury. Keywords: Inflammatory, Sirtuin, Edema, Cytokines, Lung injury, TC 1 lung alveolar epithelial cells, Sirt

    Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    Get PDF
    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells

    Adding Value to JWST Spectra and Photometry: Stellar Population and Star Formation Properties of Spectroscopically Confirmed JADES and CEERS Galaxies at z>7z > 7

    Full text link
    In this paper, we discuss measurements of the stellar population and star forming properties for 43 spectroscopically confirmed publicly available high-redshift z>7z > 7 JWST galaxies in the JADES and CEERS observational programs. We carry out a thorough study investigating the relationship between spectroscopic features and photometrically derived ones, including from spectral energy distribution (SED) fitting of models, as well as morphological and structural properties. We find that the star formation rates (SFRs) measured from Hβ\beta line emission are higher than those estimated from Bayesian SED fitting and UV luminosity, with ratios SFRHβ_{H\beta}/ SFRUV_{UV} ranging from 2~13. This is a sign that the star formation history is consistently rising given the timescales of Hβ\beta vs UV star formation probes. In addition, we investigate how well equivalent widths (EWs) of Hβ\beta λ\lambda4861, [O III] λ\lambda4959, and [O III] λ\lambda5007 can be measured from photometry, finding that on average the EW derived from photometric excesses in filters is 30% smaller than the direct spectroscopic measurement. We also discover that a stack of the line emitting galaxies shows a distinct morphology after subtracting imaging that contains only the continuum. This gives us a first view of the line or ionized gas emission from z>7z > 7 galaxies, demonstrating that this material has a similar distribution, statistically, as the continuum. We also compare the derived SFRs and stellar masses for both parametric and non-parametric star formation histories, where we find that 35% of our sample formed at least 30% of their stellar mass in recent (< 10 Myr) starburst events.Comment: 17 Pages, 13 Figures, 4 Tables, submitted to MNRA

    Indoleamine 2,3-Dioxygenase Immune Status as a Potential Biomarker of Radioiodine Efficacy for Advanced Distant Metastatic Differentiated Thyroid Cancer

    Get PDF
    PurposeHost immunity influences the impact of cancer therapy but the effect of immune status in radioiodine (RAI)-treated differentiated thyroid cancer (DTC) remains obscure. Here we investigated indoleamine 2,3-dioxygenase (IDO) activity as a biomarker of response to RAI in patients with distant metastatic DTC (dmDTC).MethodsPatients with dmDTC receiving RAI were evaluated for serum IDO activity (kynurenine and kynurenine:tryptophan ratio) at baseline and 3 months after RAI. The optimal cut-off value for these biomarkers to predict response was established by receiver operating characteristic analysis. The relationship between disease outcomes, overall survival (OS) and progression-free survival (PFS), and IDO activity levels was studied.ResultsHigher baseline kynurenine:tryptophan ratio (&gt;2.46) was correlated with poorer RAI response as well as shorter median PFS (45 mo versus not reached, p=0.002) and OS (78 mo versus not reached, p=0.035). High baseline kynurenine:tryptophan ratio was also correlated with a reduced number of tumor-infiltrating lymphocytes. Higher post/pre-kynurenine ratio (&gt;1.69) was associated with survival endpoints: shorter median PFS (48 mo versus not reached, p=0.002) and OS (68 mo versus not reached, p=0.010). Favorable baseline and favorable change corresponded with better PFS and OS.ConclusionsOur results suggest that RAI also alters IDO activity in dmDTC patients. IDO activity could predict progression and survival outcomes for advanced dmDTC patients. Serum IDO biomarker levels could be used to select dmDTC likely to benefit from RAI therapy, although further studies are necessary

    Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Activation of NLRP3 and NLRC4 Inflammasomes With Differential Requirement for ASC

    Get PDF
    Escherichia coli is a common cause of mastitis in dairy cows. The adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) synergizes with caspase-1 to regulate inflammasome activation during pathogen infection. Here, the ASC gene was knocked out in bovine mammary epithelial (MAC-T) cells using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas)-9 technology. MAC-T cells were pre-incubated with and without Lactobacillus rhamnosus GR-1 and then exposed to E. coli. Western blot analysis demonstrated increased expression of NLRP3 and NLRC4 following E. coli infection, but this increase was attenuated by pre-incubation with L. rhamnosus GR-1, regardless of ASC knockout. Western blot and immunofluorescence analyses revealed that pre-incubation with L. rhamnosus GR-1 decreased E. coli-induced caspase-1 activation at 6 h after E. coli infection, as also observed in ASC-knockout MAC-T cells. The E. coli-induced increase in caspase-4 mRNA expression was inhibited by pre-incubation with L. rhamnosus GR-1. ASC knockout diminished, but did not completely prevent, increased production of IL-1β and IL-18 and cell pyroptosis associated with E. coli infection, whereas pre-incubation with L. rhamnosus GR-1 inhibited this increase. Our data indicate that L. rhamnosus GR-1 suppresses activation of ASC-dependent NLRP3 and NLRC4 inflammasomes and production of downstream IL-lβ and IL-18 during E. coli infection. L. rhamnosus GR-1 also inhibited E. coli-induced cell pyroptosis, in part through attenuation of NLRC4 and non-canonical caspase-4 activation independently of ASC

    BET bromodomain proteins regulate enhancer function during adipogenesis

    Get PDF
    Developmental transitions are guided by master regulatory transcription factors. During adipogenesis, a transcriptional cascade culminates in the expression of PPARγ and C/EBPα, which orchestrate activation of the adipocyte gene expression program. However, the coactivators controlling PPARγ and C/EBPα expression are less well characterized. Here, we show the bromodomain-containing protein, BRD4, regulates transcription of PPARγ and C/EBPα. Analysis of BRD4 chromatin occupancy reveals that induction of adipogenesis in 3T3L1 fibroblasts provokes dynamic redistribution of BRD4 to de novo super-enhancers proximal to genes controlling adipocyte differentiation. Inhibition of the bromodomain and extraterminal domain (BET) family of bromodomain-containing proteins impedes BRD4 occupancy at these de novo enhancers and disrupts transcription of Pparg and Cebpa, thereby blocking adipogenesis. Furthermore, silencing of these BRD4-occupied distal regulatory elements at the Pparg locus by CRISPRi demonstrates a critical role for these enhancers in the control of Pparg gene expression and adipogenesis in 3T3L1s. Together, these data establish BET bromodomain proteins as time- and context-dependent coactivators of the adipocyte cell state transition
    • …
    corecore