24 research outputs found

    Improved Electrochemical Performance of Surface Coated LiNi0.80Co0.15Al0.05O2 With Polypyrrole

    Get PDF
    Nickel-rich ternary layered oxide (LiNi0.80Co0.15Al0.05O2, LNCA) cathodes are favored in many fields such as electric vehicles due to its high specific capacity, low cost, and stable structure. However, LNCA cathode material still has the disadvantages of low initial coulombic efficiency, rate capability and poor cycle performance, which greatly restricts its commercial application. To overcome this barrier, a polypyrrole (PPy) layer with high electrical conductivity is designed to coat on the surface of LNCA cathode material. PPy coating layer on the surface of LNCA successfully is realized by means of liquid-phase chemical oxidation polymerization method, and which has been verified by the scanning electron microscopy (SEM), transmission electron microscope (TEM) and fourier transform infrared spectroscopy (FTIR). PPy-coated LNCA (PL-2) exhibits satisfactory electrochemical performances including high reversible capacity and excellent rate capability. Furthermore, the capability is superior to pristine LNCA. So, it provides a new structure of conductive polymer modified cathode materials with good property through a mild modification method

    Network pharma cology and GEO chip based elucidation of mechanisms underlying the use of Yi Tieqing for prevention and treatment of postoperative nausea and vomiting

    Get PDF
    Purpose: To investigate the mechanism(s) involved in the use of Yi Tieqing for the prevention and treatment of postoperative nausea and vomiting (PONV), using network pharmacology and GEO chip. Methods: The chemical constituents and functional targets of five traditional Chinese medicines in Yi Tieqing were obtained by searching TCMSP database. The PONV disease targets were identified through DisGeNET, GeneCards and DrugBank databases, and differential expression genes of the GEO database chip (GSE7762) were mined. From the intersections of the component targets and disease targets, the core targets of drugs and diseases were obtained. The core targets were investigated in R language using GO-biological process and KEGG enrichment analyses, and their biological activities were verified via molecular docking. Finally, the severity and incidence of PONV in control and treatment groups were determined and compared. Results: A total of 254 bioactive components and 301 related potential targets were obtained from the TCMSP database. There were 2092 related targets in PONV, and 6 intersecting targets were obtained from Venn diagram. The results of GO biological process and KEGG enrichment analysis showed that the incidence of PONV was strongly correlated with the negative regulation of response to wounding and nervous system. Clinical results showed that from 24 – 48 h (T2) after operation, the severity and incidence of PONV in the treatment group were significantly lower than those in the control group (p < 0.05). Conclusion: Yi Tieqing alleviates PONV through multi-components, multi-targets, and multi-pathways

    Coherent control of a high-orbital hole in a semiconductor quantum dot

    Full text link
    Coherently driven semiconductor quantum dots are one of the most promising platforms for non-classical light sources and quantum logic gates which form the foundation of photonic quantum technologies. However, to date, coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states. Ultrafast coherent control of high-orbital states is obstructed by the demand for tunable terahertz pulses. To break this constraint, we demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process. The coherent nature of the Auger process is proved by Rabi oscillation and Ramsey interference. Harnessing this coherence further enables the investigation of single-hole relaxation mechanism. A hole relaxation time of 161 ps is observed and attributed to the phonon bottleneck effect. Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters and developing new types of orbital-based quantum photonic devices.Comment: Manuscript with 14 pages and 6 figures plus supplementary Information comprising 15 pages and 14 figure

    Exosomes in the tumor microenvironment of sarcoma: from biological functions to clinical applications

    No full text
    The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications

    Susceptibility Assessment of Flash Floods: A Bibliometrics Analysis and Review

    No full text
    A flash flood disaster is one of the most destructive natural disasters. With the increase in extreme rainfall events, more and more areas will be threatened by flash floods. The flash flood susceptibility assessment is the basis of flash flood risk assessment and is also an important step in flash flood disaster management. Based on Citespace analysis tools, this study made a bibliometric and visualized analysis of 305 documents collected in the core collection of Web of Science in the past 15 years, including the analysis of the number of publications and citation frequency, influence analysis, keyword analysis, author co-citation analysis, and institutional co-operation analysis. This paper summarizes the current research status and future development trend of flash flood susceptibility assessment from five key research subfields, including assessment scale, assessment unit, assessment index, assessment model, and model assessment method, discusses the analysis of the application of remote sensing and GIS in flash flood susceptibility assessment, discusses the problems encountered in the current research of the five subfields, and provides suggestions for flash flood hazard control

    Clay nanoparticles elicit long-term immune responses by forming biodegradable depots for sustained antigen stimulation

    No full text
    Nanomaterials have been widely tested as new generation vaccine adjuvants, but few evoke efficient immunoreactions. Clay nanoparticles, for example, layered double hydroxide (LDH) and hectorite (HEC) nanoparticles, have shown their potent adjuvanticity in generating effective and durable immune responses. However, the mechanism by which clay nanoadjuvants stimulate the immune system is not well understood. Here, it is demonstrated that LDH and HEC-antigen complexes form loose agglomerates in culture medium/serum. They also form nodules with loose structures in tissue after subcutaneous injection, where they act as a depot for up to 35 d. More importantly, clay nanoparticles actively and continuously recruit immune cells into the depot for up to one month, and stimulate stronger immune responses than FDA-approved adjuvants, Alum and QuilA. Sustained antigen release is also observed in clay nanoparticle depots, with 50-60% antigen released after 35 d. In contrast, Alum-antigen complexes show minimal antigen release from the depot. Importantly, LDH and HEC are more effective than QuilA and Alum in promoting memory T-cell proliferation. These findings suggest that both clay nanoadjuvants can serve as active vaccine platforms for sustained and potent immune responses

    Clay Nanoparticles Elicit Long‐Term Immune Responses by Forming Biodegradable Depots for Sustained Antigen Stimulation

    No full text
    Abstract Nanomaterials have been widely tested as new generation vaccine adjuvants, but few evoke efficient immunoreactions. Clay nanoparticles, for example, layered double hydroxide (LDH) and hectorite (HEC) nanoparticles, have shown their potent adjuvanticity in generating effective and durable immune responses. However, the mechanism by which clay nanoadjuvants stimulate the immune system is not well understood. Here, it is demonstrated that LDH and HEC–antigen complexes form loose agglomerates in culture medium/serum. They also form nodules with loose structures in tissue after subcutaneous injection, where they act as a depot for up to 35 d. More importantly, clay nanoparticles actively and continuously recruit immune cells into the depot for up to one month, and stimulate stronger immune responses than FDA‐approved adjuvants, Alum and QuilA. Sustained antigen release is also observed in clay nanoparticle depots, with 50–60% antigen released after 35 d. In contrast, Alum–antigen complexes show minimal antigen release from the depot. Importantly, LDH and HEC are more effective than QuilA and Alum in promoting memory T‐cell proliferation. These findings suggest that both clay nanoadjuvants can serve as active vaccine platforms for sustained and potent immune responses
    corecore