196 research outputs found
Dynamics of polymer chain collapse into compact states
Molecular dynamics simulation methods are used to study the folding of
polymer chains into packed cubic states. The polymer model, based on a chain of
linked sites moving in the continuum, includes both excluded volume and
torsional interactions. Different native-state packing arrangements and chain
lengths are explored; the organization of the native state is found to affect
both the ability of the chain to fold successfully and the nature of the
folding pathway as the system is gradually cooled. An order parameter based on
contact counts is used to provide information about the folding process, with
contacts additionally classified according to criteria such as core and surface
sites or local and distant site pairs. Fully detailed contact maps and their
evolution are also examined.Comment: 11 pages, 11 figures (some low resolution
Secure quantum key distribution using squeezed states
We prove the security of a quantum key distribution scheme based on
transmission of squeezed quantum states of a harmonic oscillator. Our proof
employs quantum error-correcting codes that encode a finite-dimensional quantum
system in the infinite-dimensional Hilbert space of an oscillator, and protect
against errors that shift the canonical variables p and q. If the noise in the
quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor
e^r=1.34) is sufficient in principle to ensure the security of a protocol that
is suitably enhanced by classical error correction and privacy amplification.
Secure key distribution can be achieved over distances comparable to the
attenuation length of the quantum channel.Comment: 19 pages, 3 figures, RevTeX and epsf, new section on channel losse
Correlated Errors in Quantum Error Corrections
We show that errors are not generated correlatedly provided that quantum bits
do not directly interact with (or couple to) each other. Generally, this
no-qubits-interaction condition is assumed except for the case where two-qubit
gate operation is being performed. In particular, the no-qubits-interaction
condition is satisfied in the collective decoherence models. Thus, errors are
not correlated in the collective decoherence. Consequently, we can say that
current quantum error correcting codes which correct single-qubit-errors will
work in most cases including the collective decoherence.Comment: no correction, 3 pages, RevTe
Constraints on the uncertainties of entangled symmetric qubits
We derive necessary and sufficient inseparability conditions imposed on the
variance matrix of symmetric qubits. These constraints are identified by
examining a structural parallelism between continuous variable states and two
qubit states. Pairwise entangled symmetric multiqubit states are shown here to
obey these constraints. We also bring out an elegant local invariant structure
exhibited by our constraints.Comment: 5 pages, REVTEX, Improved presentation; Theorem on neccessary and
sufficient condition included; To appear in Phys. Lett.
Resonant cancellation of off-resonant effects in a multilevel qubit
Off-resonant effects are a significant source of error in quantum
computation. This paper presents a group theoretic proof that off-resonant
transitions to the higher levels of a multilevel qubit can be completely
prevented in principle. This result can be generalized to prevent unwanted
transitions due to qubit-qubit interactions. A simple scheme exploiting dynamic
pulse control techniques is presented that can cancel transitions to higher
states to arbitrary accuracy.Comment: 4 pages, Revtex, submitted for publicatio
Non-adiabatic geometrical quantum gates in semiconductor quantum dots
In this paper we study the implementation of non-adiabatic geometrical
quantum gates with in semiconductor quantum dots. Different quantum information
enconding/manipulation schemes exploiting excitonic degrees of freedom are
discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the
limitations of adiabatic schemes relying on adiabatic Berry phase; fast
geometrical quantum gates can be in principle implementedComment: 5 Pages LaTeX, 10 Figures include
Screening of qubit from zero-temperature reservoir
We suggest an application of dynamical Zeno effect to isolate a qubit in the
quantum memory unit against decoherence caused by coupling with the reservoir
having zero temperature. The method is based on using an auxiliary casing
system that mediate the qubit-reservoir interaction and is simultaneously
frequently erased to ground state. This screening procedure can be implemented
in the cavity QED experiments to store the atomic and photonic qubit states.Comment: 4 pages, 5 figure
Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence
We present an all-optical implementation of quantum computation using
semiconductor quantum dots. Quantum memory is represented by the spin of an
excess electron stored in each dot. Two-qubit gates are realized by switching
on trion-trion interactions between different dots. State selectivity is
achieved via conditional laser excitation exploiting Pauli exclusion principle.
Read-out is performed via a quantum-jump technique. We analyze the effect on
our scheme's performance of the main imperfections present in real quantum
dots: exciton decay, hole mixing and phonon decoherence. We introduce an
adiabatic gate procedure that allows one to circumvent these effects, and
evaluate quantitatively its fidelity
Quantitative Treatment of Decoherence
We outline different approaches to define and quantify decoherence. We argue
that a measure based on a properly defined norm of deviation of the density
matrix is appropriate for quantifying decoherence in quantum registers. For a
semiconductor double quantum dot qubit, evaluation of this measure is reviewed.
For a general class of decoherence processes, including those occurring in
semiconductor qubits, we argue that this measure is additive: It scales
linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure
Organic photovoltaic devices with enhanced efficiency processed from non-halogenated binary solvent blends
The development of processing routes to fabricate organic photovoltaic devices (OPVs) using non-halogenated solvents is a necessary step towards their eventual commercialisation. To address this issue, we have used Hansen solubility parameter analysis to identify a non-halogenated solvent blend based on a mixture of carbon disulphide and acetone. This solvent blend was then used to deposit a donor–acceptor polymer–fullerene thin-film that was then used as the active layer of bulk-heterojunction OPV. For the benchmark polymer:fullerene system PCDTBT:PC70BM, a power conversion efficiency of 6.75% was achieved; a 20% relative improvement over reference cells processed using the chlorinated-solvent chlorobenzene. Improvements in device efficiency are attributed to an increase in electron and hole conductivity resulting from enhanced fullerene crystallisation; a property that leads to enhanced device efficiency through improved charge extraction
- …