2,967 research outputs found

    The Influence of Intense Chemical Pollution on the Community Composition, Diversity and Abundance of Anammox Bacteria in the Jiaojiang Estuary (China)

    Get PDF
    Continuous chemical pollution is one of the most serious environmental problems in the Jiaojiang Estuary of the East Sea (China). This chemical pollution has significantly changed the estuarine environmental conditions and may have profoundly influenced the distribution of anammox bacterial communities in this estuary. Here, we investigated the influence of chemical pollution on the community composition, diversity and abundance of anammox bacteria in Jiaojiang estuarine sediments. Phylogenetic analysis of 16S rRNA genes showed that the majority of anammox bacterial sequences retrieved from the estuarine intertidal sediments were associated with Kuenenia. In contrast, different anammox communities composed of Brocadia, Kuenenia, Scalindua and Jettenia were found in the estuarine subtidal sediments. Redundancy analysis (RDA) indicated that the sediment nitrobenzene and organic content had significant impacts on the distribution of anammox communities in the intertidal sediments. Pearson correlation analysis showed that the diversity of anammox bacteria in the intertidal sediments was positively correlated with the organic content. In contrast, RDA results showed that the nitrobenzene content, NO3− concentration and salinity significantly influenced the distribution of anammox communities in the subtidal sediments. The diversity and relative abundance of anammox bacteria in the subtidal sediments were positively correlated with NO3− concentration

    Nanobubbles for enhanced ultrasound imaging of tumors

    Get PDF
    The fabrication and initial applications of nanobubbles (NBs) have shown promising results in recent years. A small particle size is a basic requirement for ultrasound contrast-enhanced agents that penetrate tumor blood vessel pores to allow for targeted imaging and therapy. However, the nanoscale size of the particles used has the disadvantage of weakening the imaging ability of clinical diagnostic ultrasound. In this work, we fabricated a lipid NBs contrast-enhanced ultrasound agent and evaluated its passive targeting ability in vivo. The results showed that the NBs were small (436.8 ± 5.7 nm), and in vitro ultrasound imaging suggested that the ultrasonic imaging ability is comparable to that of microbubbles (MBs). In vivo experiments confirmed the ability of NBs to passively target tumor tissues. The NBs remained in the tumor area for a longer period because they exhibited enhanced permeability and retention. Direct evidence was obtained by direct observation of red fluorescence-dyed NBs in tumor tissue using confocal laser scanning microscopy. We have demonstrated the ability to fabricate NBs that can be used for the in vivo contrast-enhanced imaging of tumor tissue and that have potential for drug/gene delivery

    Screening soybean for adaptation to relay intercropping systems: associations between reproductive organ abscission and yield

    Get PDF
    The flower and pod abscission is one of the characteristics of soybean that severely limits yield, especially when intercropped with maize. Therefore, suitable soybean cultivars for intercropping are urgently needed to improve farmland productivity. We conducted a two-year field experiment to evaluate the flower and pod abscission, dry matter production, and yield advantages of 15 soybean cultivars. The results of the principal component analysis (PCA) and cluster analysis (CA) showed that 15 soybean cultivars were classified into three groups, i.e., high-yielding group (HYG), mid-yielding cultivars (MYG), and low-yielding cultivars (LYG). In the HYG group, ND12 and GX3 had characteristics of more flowers and pods and less abscission of flowers and pods. Moreover, the net assimilation rate (NAR) and relative growth rate (RGR) of HYG were significantly higher than the other. The HYG obtained a considerably higher partition ratio of 53% from biomass to seed than the other. Therefore, selecting and breeding cultivars with the characteristics of more flowers and pods and less abscission of flowers and pods can help to increase soybean yield in intercropping.This research was funded by the Program on Industrial Technology System of National Soybean (CARS-04-PS18), and the National Key Research and Development Program of China (2021YFF1000500). Qing Du was a recipient of a joint PhD scholarship supported by the China Scholarship Council (CSC) (No. 202106910037)

    A Performance Analysis Model of TCP over Multiple Heterogeneous Paths for 5G Mobile Services

    Full text link
    Driven by the primary requirement of emerging 5G mobile services, the demand for concurrent multipath transfer (CMT) is still prominent. Yet, multipath transport protocols are not widely adopted and TCP-based CMT schemes will still be in dominant position in 5G. However, the performance of TCP flow transferred over multiple heterogeneous paths is prone to the link quality asymmetry, the extent of which was revealed to be significant by our field investigation. In this paper, we present a performance analysis model for TCP over multiple heterogeneous paths in 5G scenarios, where both bandwidth and delay asymmetry are taken into consideration. The evaluation adopting parameters from field investigation shows that the proposed model can achieve high accuracy in practical environments. Some interesting inferences can be drawn from the proposed model, such as the dominant factor that affect the performance of TCP over heterogeneous networks, and the criteria of determining the appropriate number of links to be used under different circumstances of path heterogeneity. Thus, the proposed model can provide a guidance to the design of TCP-based CMT solutions for 5G mobile services

    Proto-oncogene c-erbB2 initiates rat primordial follicle growth via PKC and MAPK pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>c-erbB2, a proto-oncogene coding epidermal growth factor receptor-like receptor, also as a chemosensitivity/prognosis marker for gynecologic cancer, may be involved in initiation of growth of rat primordial follicles. The aim of the present study is to investigate the role and signal pathway of c-erbB2 in onset of rat primordial follicle development.</p> <p>Methods</p> <p>The expression of c-erbB2 mRNA and protein in neonatal ovaries cultured 4 and 8 days with/without epidermal growth factor (EGF) were examined by in situ hybridization, RT-PCR and western blot. The function of c-erbB2 in the primordial folliculogenesis was abolished by small interfering RNA transfection. Furthermore, MAPK inhibitor PD98059 and PKC inhibitor calphostin were used to explore the possible signaling pathway of c-erbB2 in primordial folliculogenesis.</p> <p>Results</p> <p>The results showed that c-erbB2 mRNA was expressed in ooplasm and the expression of c-erbB2 decreased after transfection with c-erbB2 siRNA. Treatment with EGF at 50 ng/ml significantly increased c-erbB2 expression and primary and secondary follicle formation in ovaries. However, this augmenting effect was remarkably inhibited by c-erbB2 siRNA transfection. Furthermore, folliculogenesis offset was blocked by calphostin (5 × 10(-4) mmol/L) and PD98059 (5 × 10(-2) mmol/L), but both did not down-regulate c-erbB2 expression. In contrast, the expressions of p-ERK and p-PKC were decreased obviously by c-erbB2 siRNA transfection.</p> <p>Conclusions</p> <p>c-erbB2 initiates rat primordial follicle growth via PKC and MAPK pathways, suggesting an important role of c-erbB2 in rat primordial follicle initiation and development.</p

    Learning Enhanced Resolution-wise features for Human Pose Estimation

    Full text link
    Recently, multi-resolution networks (such as Hourglass, CPN, HRNet, etc.) have achieved significant performance on pose estimation by combining feature maps of various resolutions. In this paper, we propose a Resolution-wise Attention Module (RAM) and Gradual Pyramid Refinement (GPR), to learn enhanced resolution-wise feature maps for precise pose estimation. Specifically, RAM learns a group of weights to represent the different importance of feature maps across resolutions, and the GPR gradually merges every two feature maps from low to high resolutions to regress final human keypoint heatmaps. With the enhanced resolution-wise features learnt by CNN, we obtain more accurate human keypoint locations. The efficacies of our proposed methods are demonstrated on MS-COCO dataset, achieving state-of-the-art performance with average precision of 77.7 on COCO val2017 set and 77.0 on test-dev2017 set without using extra human keypoint training dataset.Comment: Published on ICIP 202

    Decreased expression of long non-coding RNA WT1-AS promotes cell proliferation and invasion in gastric cancer

    Get PDF
    AbstractTumor recurrence and metastasis remain the major obstacles for the successful treatment of patients diagnosed with gastric cancer. In recent years, long non-coding RNAs (lncRNAs) have been considered as key regulators of tumor behavior. In this study, we investigated the expression and biological role of a newly-identified cancer-related lncRNA, WT1-AS. We found that WT1-AS expression was significantly down-regulated in tumor tissues compared to matched adjacent non-tumor tissues. The WT1-AS expression level was also associated with tumor size and the clinicopathological stage. Cell proliferation, migration, and invasion were inhibited, and the proportion of G0/G1 cells increased when WT1-AS was ectopically-expressed in gastric cancer cells. Furthermore, ectopic expression of WT1-AS was demonstrated to inhibit tumor growth and metastasis in vivo. Finally, we found that WT1-AS overexpression could decrease ERK protein phosphorylation. Our study indicates that WT1-AS is significantly down-regulated in gastric cancers and may be correlated with tumor progression

    An adaptive network coding scheme for multipath transmission in cellular-based vehicular networks

    Get PDF
    With the emergence of vehicular Internet-of-Things (IoT) applications, it is a significant challenge for vehicular IoT systems to obtain higher throughput in vehicle-to-cloud multipath transmission. Network Coding (NC) has been recognized as a promising paradigm for improving vehicular wireless network throughput by reducing packet loss in transmission. However, existing researches on NC do not consider the influence of the rapid quality change of wireless links on NC schemes, which poses a great challenge to dynamically adjust the coding rate according to the variation of link quality in vehicle-to-cloud multipath transmission in order to avoid consuming unnecessary bandwidth resources and to increase network throughput. Therefore, we propose an Adaptive Network Coding (ANC) scheme brought by the novel integration of the Hidden Markov Model (HMM) into the NC scheme to efficiently adjust the coding rate according to the estimated packet loss rate (PLR). The ANC scheme conquers the rapid change of wireless link quality to obtain the utmost throughput and reduce the packet loss in transmission. In terms of the throughput performance, the simulations and real experiment results show that the ANC scheme outperforms state-of-the-art NC schemes for vehicular wireless multipath transmission in vehicular IoT systems.This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2019YJS015, in part by the National Natural Science Foundation of China (NSFC) under Grant 61872029, and in part by the Beijing Municipal Natural Science Foundation under Grant 4182048

    Fecal Microbiota Dynamics Reveal the Feasibility of Early Weaning of Yak Calves under Conventional Grazing System

    Get PDF
    Background: The gut microbiota plays an important role in the health and production of animals. However, little information is available on the dynamic variations and comparison of intestinal microbiota in post-weaning yak calves living on the QTP. Methods: We explored the fecal bacterial microbiota succession of yak calves at different months after early weaning (60 d) compared with cattle calves by 16S rRNA gene amplicon sequencing and functional composition prediction. Results: We found no significant difference in blood biochemical parameters related to glucose and lipid metabolism between yaks and calves in different months after weaning. The core fecal bacterial microbiota from both species of calves was dominated by Ruminococcaceae, Rikenellaceae, and Bacteroidaceae. The fecal microbial community has a great alteration within the time after weaning in both cattle and yak calves, but cattle showed a larger change. After five months, the microbiota achieves a stable and concentrated state. This is also similar to the functional profile. Conclusions: Based on the exploration of dynamic changes in the fecal microbiota at an early stage of life, our results illustrated that there were no negative effects of intestinal microbiota succession on yak calves when early weaning was employed
    corecore