7 research outputs found

    We have already heard that the treatment doesn't do anything, so why should we take it?: A mixed method perspective on Chagas disease knowledge, attitudes, prevention, and treatment behaviour in the Bolivian Chaco

    Get PDF
    Author summary Chagas disease (CD) is caused by infection with the parasite Trypanosoma cruzi and is on the list of the most neglected tropical diseases on Earth. It has become an international health issue affecting 6-7 million people worldwide, mainly in Latin America. We performed a qualitative and quantitative study in Monteagudo, Bolivia, in order to paint an overall picture of CD in one of the most afflicted regions in the world: the Bolivian Chaco. Community members and key informants, such as patients and healthcare staff helped us to understand their current situation. Even after a large health campaign, persistent knowledge gaps, misconceptions and structural barriers were identified, leading to normalization and acceptance of CD and its social consequences. Relevant findings included the broad use of ivermectin for CD treatment without scientific evidence. We also found that misinterpretations of serologic test results contribute to a critical attitude towards biomedical treatment that is stopping patients from seeking treatment. With this research we aim to update the data on current knowledge and to analyse remaining barriers for transmission control and treatment, in order to focus future interventions and advocate for patient's rights. Background: Chagas disease (CD) is highly endemic in the Bolivian Chaco. The municipality of Monteagudo has been targeted by national interventions as well as by Medecins Sans Frontieres to reduce infection rates, and to decentralize early diagnosis and treatment. This study seeks to determine the knowledge and attitudes of a population with increased awareness and to identify remaining factors and barriers for sustained vector control, health care seeking behaviour, and access, in order to improve future interventions. Methodology/Principal findings A cross-sectional survey was conducted among approximately 10% (n = 669) of the municipality of Monteagudo's households that were randomly selected. Additionally, a total of 14 in-depth interviews and 2 focus group discussions were conducted with patients and key informants. Several attitudes and practices were identified that could undermine effective control against (re-)infection. Knowledge of clinical symptoms and secondary prevention was limited, and revealed specific misconceptions. Although 76% of the participants had been tested for CD, only 18% of those who tested positive concluded treatment with benznidazole (BNZ). Sustained positive serologies after treatment led to perceived ineffectiveness of BNZ. Moreover, access barriers such as direct as well as indirect costs, BNZ stock-outs and a fear of adverse reactions triggered by other community members made patients opt for alternative treatments against CD such as veterinary ivermectin, used by 28% of infected participants in our study. The lack of accessible care for chronic complications as well as socioeconomic consequences, such as the exclusion from both job opportunities and bank loans contributed to the ongoing burden of CD. Conclusions/Significance Large scale interventions should be accompanied by operational research in order to identify misconceptions and unintended consequences early on, to generate accessible data for future interventions, and for rigorous evaluation. An integrated, community-based approach tackling social determinants and including both traditional and animal health sectors might help to overcome current barriers and advocate for patients' rights

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Understanding the widespread use of veterinary ivermectin for Chagas disease, underlying factors and implications for the COVID-19 pandemic: a convergent mixed-methods study

    Get PDF
    OBJECTIVES: Veterinary ivermectin (vet-IVM) has been used widely in Latin America against COVID-19, despite the lack of scientific evidence and potential risks. Widespread vet-IVM intake was also discovered against Chagas disease during a study in Bolivia prior to the pandemic. All vet-IVM-related data were extracted to understand this phenomenon, its extent and underlying factors and to discuss potential implications for the current pandemic. DESIGN: A convergent mixed-methods study design including a survey, qualitative in-depth interviews (IDI) and focus group discussions (FGD). SETTING: A cross-sectional study conducted in 2018 covering the geographic area of Monteagudo, an endemic municipality for Chagas disease. PARTICIPANTS: A total of 669 adult household representatives from 26 communities participated in the survey, supplemented by 14 IDI and 2 FGD among patients, relatives and key informants. RESULTS: 9 IDI and 2 FGD contained narratives on vet-IVM use against Chagas disease. Five main themes emerged: (1) the extent of the vet-IVM phenomenon, (2) the perception of vet-IVM as a treatment for Chagas disease, (3) the vet-IVM market and the controversial role of stakeholders, (4) concerns about potential adverse events and (5) underlying factors of vet-IVM use against Chagas disease. In quantitative analysis, 28% of participants seropositive for Chagas disease had taken vet-IVM. Factors associated with multivariate analysis were advanced age (OR 17.01, 95 CI 1.24 to 36.55, p=0.027 for age above 60 years), the experience of someone close as information source (OR 3.13, 95 CI 1.62 to 5.02, p<0.001), seropositivity for Chagas disease (OR 3.89, 95 CI 1.39 to 6.20, p=0.005) and citing the unavailability of benznidazole as perceived healthcare barrier (OR 2.3, 95 CI 1.45 to 5.18, p=0.002). Participants with an academic education were less likely to report vet-IVM intake (OR 0.12, 95 CI 0.01 to 0.78, p=0.029). CONCLUSIONS: Social determinants of health, the unavailability of treatment and a wonder drug image might contribute to the phenomenon of vet-IVM

    Appendix II: South Africa

    No full text

    Appendix: South Africa

    No full text
    corecore