6 research outputs found

    Re–Os geochronology of Cu and W–Mo deposits in the Balkhash metallogenic belt, Kazakhstan and its geological significance

    Get PDF
    The Central Asian metallogenic domain (CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-large porphyritic Cu–Mo deposits and some quartz vein- and greisen-type W–Mo deposits, is a well-known porphyritic Cu–Mo metallogenic belt in the CAMD. In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re–Os compositional analyses and Re–Os isotopic dating. Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W–Mo deposits—East Kounrad, Akshatau and Zhanet—all have relatively high Re contents (2712–2772 μg/g for Borly and 2.267–31.50 μg/g for the other three W–Mo deposits), and lower common Os contents (0.670–2.696 ng/g for Borly and 0.0051–0.056 ng/g for the other three). The molybdenites from the Borly porphyry Cu–Mo deposit and the East Kounrad, Zhanet, and Akshatau quartz vein- and greisen-type W–Mo deposits give average model Re–Os ages of 315.9 Ma, 298.0 Ma, 295.0 Ma, and 289.3 Ma respectively. Meanwhile, molybdenites from the East Kounrad, Zhanet, and Akshatau W–Mo deposits give a Re–Os isochron age of 297.9 Ma, with an MSWD value of 0.97. Re–Os dating of the molybdenites indicates that Cu–W–Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian (315.9–289.3 Ma), while the porphyry Cu–Mo deposits formed at ∼316 Ma, and the quartz vein-greisen W–Mo deposits formed at ∼298 Ma. The Re–Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement. Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China, the formation of the Cu–Mo metallogenesis in the Balkhash metallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively, the large-scale Late Carboniferous porphyry Cu–Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities

    Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China

    No full text
    Abstract Platinum group element (PGE) mineralization occurs associated with mafic-ultramafic rocks in different environments. Although the PGE enrichment is primarily caused by magmatic processes, remobilization of Pd and Pt by hydrothermal fluids has likely been an important mechanism in increasing the precious metal grade in many cases. However, the timing of PGE enrichment by hydrothermal fluid processes is commonly difficult to constrain. The Jinchuan ultramafic intrusion in Northwest China is ranked the world’s third largest magmatic Ni-Cu sulfide deposit. Besides the main ore body consisting of net-textured and disseminated sulfides, there is hydrothermal mineralization associated with sheared contact zones of the intrusion, which shows elevated Cu and Pt concentrations. The unusually high Pt is hosted mainly in sperrylite within altered silicates. In this study, we applied the Pt-Os geochronometer to a Cu-Pt-rich ore body, yielding an isochron age of 436 ± 23 Ma. This age is significantly younger than the main ore formation age of ca. 825 Ma, but similar to that of the continental collision event between the Qaidam-Qilian Block and Alax Block of North China. This indicates that the intrusion may have been uplifted during the Paleozoic orogenic processes from deeper crust, resulting in the generation of the Cu-Pt-rich hydrothermal ore body. Our new data provide the first strong age constraints on the hydrothermal PGE enrichment, showing that the Pt-Os isotope system is potentially a powerful tool for dating hydrothermal overprinting on Ni-Cu-PGE sulfide deposits
    corecore