6 research outputs found

    Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese

    No full text
    One hundred and twenty-five acid-resistant presumptive lactobacilli were isolated from Slovak Bryndza cheese and screened for their antimicrobial activity against eight bacterial pathogens using spot agar assay. Out of twenty-six Lactobacillus strains with strong inhibition activity, twenty were identified as Lactobacillus plantarum and six as Lactobacillus fermentum. The most active eleven L. plantarum isolates were further characterized in vitro for some probiotic and safety properties. Only three isolates K10, K21, and ZS07 showed the ability to grow over 50% in the presence of 0.3% bile. Strong deconjugation efficiency was determined for CK06 and K21. The highest -galactosidase activity was shown in isolates ZS11, B01, CK06, and ZS07. Only three of the strains had the ability to produce tyramine: CK06, LM1, and ZS11. Strains K09, K21, ZS11, and ZS15 were susceptible to all tested antibiotics. Analysis of the results confirmed the L. plantarum isolates ZS07 and K21 as the most suitable for probiotic use, due to their desirable probiotic and safety characteristics

    Probiotic Potential and Safety Properties of Lactobacillus plantarum from Slovak Bryndza Cheese

    Get PDF
    One hundred and twenty-five acid-resistant presumptive lactobacilli were isolated from Slovak Bryndza cheese and screened for their antimicrobial activity against eight bacterial pathogens using spot agar assay. Out of twenty-six Lactobacillus strains with strong inhibition activity, twenty were identified as Lactobacillus plantarum and six as Lactobacillus fermentum. The most active eleven L. plantarum isolates were further characterized in vitro for some probiotic and safety properties. Only three isolates K10, K21, and ZS07 showed the ability to grow over 50% in the presence of 0.3% bile. Strong deconjugation efficiency was determined for CK06 and K21. The highest β-galactosidase activity was shown in isolates ZS11, B01, CK06, and ZS07. Only three of the strains had the ability to produce tyramine: CK06, LM1, and ZS11. Strains K09, K21, ZS11, and ZS15 were susceptible to all tested antibiotics. Analysis of the results confirmed the L. plantarum isolates ZS07 and K21 as the most suitable for probiotic use, due to their desirable probiotic and safety characteristics

    Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism

    No full text
    Till this day, there is not much known about the phylogeny of the Secale genus; therefore, in our research, we tried to shed some lights on the issue of rye (Secale genus) taxonomy. The genetic diversity and phylogenetic relationships were evaluated using 13,842 DArTseq™ polymorphic markers. The model-based clustering (STRUCTURE software) separated our 84 samples into three main clusters: perennial cluster, annual cluster, and S. sylvestre cluster. The same result was obtained using Neighbour Joining tree and self-organizing maps. Secale sylvestre, S. strictum, and S. cereale are the three main species of the Secale genus. Three samples of rye are in basal positions in phylogenetic trees. These accessions share ancient morphological characters and are probably the ancestors of different lineages within Secale. Annual Secale taxa, with the exception of S. sylvestre, create one mutual taxon. We have found out that the semi-perennial taxa of S. cereale var. multicaule and S. strictum subsp. ciliatoglume are genetically closest to the annual species of S. cereale. Phylogenetic signals for semi-perennial and annual taxa are also present in S.strictum subsp. africanum. SNP-based analysis revealed that evolution of annual S. cereale has already begun in S.strictum subsp. africanum. The results showed that S. vavilovii cannot be considered as a separate species but a subspecies of S. cerealeSecale cereale subsp. dighoricum is a hybrid. It is still not clear whether we can consider S. strictum subsp. strictum and S. strictum subsp. kuprijanovii as two separate species
    corecore