310 research outputs found

    Image Analysis of Eccentric Photorefraction

    Get PDF
    This article deals with image and data analysis of the recorded video-sequences of strabistic infants. It describes a unique noninvasive measuring system based on two measuring methods (position of I. Purkynje image with relation to the centre of the lens and eccentric photorefraction) for infants. The whole process is divided into three steps. The aim of the first step is to obtain video sequences on our special system (Eye Movement Analyser). Image analysis of the recorded sequences is performed in order to obtain curves of basic eye reactions (accommodation and convergence). The last step is to calibrate of these curves to corresponding units (diopter and degrees of movement)

    Experimental implementation of the optimal linear-optical controlled phase gate

    Full text link
    We report on the first experimental realization of optimal linear-optical controlled phase gates for arbitrary phases. The realized scheme is entirely flexible in that the phase shift can be tuned to any given value. All such controlled phase gates are optimal in the sense that they operate at the maximum possible success probabilities that are achievable within the framework of any postselected linear-optical implementation. The quantum gate is implemented using bulk optical elements and polarization encoding of qubit states. We have experimentally explored the remarkable observation that the optimum success probability is not monotone in the phase.Comment: 4 pages, 5 figures, 1 tabl

    How quantum correlations enhance prediction of complementary measurements

    Full text link
    If there are correlations between two qubits then the results of the measurement on one of them can help to predict measurement results on the other one. It is an interesting question what can be predicted about the results of two complementary projective measurements on the first qubit. To quantify these predictions the complementary \emph{knowledge excesses} are used. A non-trivial constraint restricting them is derived. For any mixed state and for arbitrary measurements the knowledge excesses are bounded by a factor depending only on the maximal violation of Bell's inequalities. This result is experimentally verified on two-photon Werner states prepared by means of spontaneous parametric down-conversion.Comment: 4 pages, 4 figure

    Probabilistic quantum multimeters

    Full text link
    We propose quantum devices that can realize probabilistically different projective measurements on a qubit. The desired measurement basis is selected by the quantum state of a program register. First we analyze the phase-covariant multimeters for a large class of program states, then the universal multimeters for a special choice of program. In both cases we start with deterministic but erroneous devices and then proceed to devices that never make a mistake but from time to time they give an inconclusive result. These multimeters are optimized (for a given type of a program) with respect to the minimum probability of inconclusive result. This concept is further generalized to the multimeters that minimize the error rate for a given probability of an inconclusive result (or vice versa). Finally, we propose a generalization for qudits.Comment: 12 pages, 3 figure

    Several experimental realizations of symmetric phase-covariant quantum cloner of single-photon qubits

    Full text link
    We compare several optical implementations of phase-covariant cloning machines. The experiments are based on copying of the polarization state of a single photon in bulk optics by special unbalanced beam splitter or by balanced beam splitter accompanied by a state filtering. Also the all-fiber based setup is discussed, where the information is encoded into spatial modes, i.e., the photon can propagate through two optical fibers. Each of the four implementations possesses some advantages and disadvantages that are discussed.Comment: 8 pages, 11 figure

    Experimental asymmetric phase-covariant quantum cloning of polarization qubits

    Full text link
    We report on two optical realizations of the 121 \to 2 asymmetric phase-covariant cloning machines for polarization states of single photons. The experimental setups combine two-photon interference and tunable polarization filtering that enables us to control the asymmetry of the cloners. The first scheme involves a special unbalanced bulk beam splitter exhibiting different splitting ratios for vertical and horizontal polarizations, respectively. The second implemented scheme consists of a balanced fiber coupler where photon bunching occurs, followed by a free-space part with polarization filters. With this later approach we were able to demonstrate very high cloning fidelities which are above the universal cloning limit.Comment: 7 pages, 8 figure

    Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing

    Full text link
    We derive a bound for the security of QKD with finite resources under one-way post-processing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols like Bennett-Brassard 1984 and six-states. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N\sim 10^5 signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates

    Abnormal activity in the precuneus during time perception in Parkinson’s disease: An fMRI study

    Get PDF
    Background Parkinson's disease (PD) patients are deficient in time estimation. This deficit improves after dopamine (DA) treatment and it has been associated with decreased internal timekeeper speed, disruption of executive function and memory retrieval dysfunction. Methodology/Findings The aim of the present study was to explore the neurophysiologic correlates of this deficit. We performed functional magnetic resonance imaging on twelve PD patients while they were performing a time reproduction task (TRT). The TRT consisted of an encoding phase (during which visual stimuli of durations from 5s to 16.6s, varied at 8 levels were presented) and a reproduction phase (during which interval durations were reproduced by a button pressing). Patients were scanned twice, once while on their DA medication (ON condition) and once after medication withdrawal (OFF condition). Differences in Blood-Oxygenation-Level-Dependent (BOLD) signal in ON and OFF conditions were evaluated. The time course of activation in the brain areas with different BOLD signal was plotted. There were no significant differences in the behavioral results, but a trend toward overestimation of intervals ≤11.9s and underestimation of intervals ≥14.1s in the OFF condition (p<0.088). During the reproduction phase, higher activation in the precuneus was found in the ON condition (p<0.05 corrected). Time course was plotted separately for long (≥14.1s) and short (≤11.9s) intervals. Results showed that there was a significant difference only in long intervals, when activity gradually decreased in the OFF, but remained stable in the ON condition. This difference in precuneus activation was not found during random button presses in a control task. Conclusions/Significance Our results show that differences in precuneus activation during retrieval of a remembered duration may underlie some aspects of time perception deficit in PD patients. We suggest that DA medication may allow compensatory activation in the precuneus, which results in a more accurate retrieval of remembered interval duration
    corecore