203 research outputs found

    S-QGPU: Shared Quantum Gate Processing Unit for Distributed Quantum Computing

    Full text link
    We propose a distributed quantum computing (DQC) architecture in which individual small-sized quantum computers are connected to a shared quantum gate processing unit (S-QGPU). The S-QGPU comprises a collection of hybrid two-qubit gate modules for remote gate operations. In contrast to conventional DQC systems, where each quantum computer is equipped with dedicated communication qubits, S-QGPU effectively pools the resources (e.g., the communication qubits) together for remote gate operations, and thus significantly reduces the cost of not only the local quantum computers but also the overall distributed system. Moreover, S-QGPU's shared resources for remote gate operations enable efficient resource utilization. When not all computing qubits in the system require simultaneous remote gate operations, S-QGPU-based DQC architecture demands fewer communication qubits, further decreasing the overall cost. Alternatively, with the same number of communication qubits, it can support a larger number of simultaneous remote gate operations more efficiently, especially when these operations occur in a burst mode.Comment: 8 pages, 6 figure

    The Sombor index and coindex of two-trees

    Get PDF
    The Sombor index of a graph G G , introduced by Ivan Gutman, is defined as the sum of the weights dG(u)2+dG(v)2 \sqrt{d_G(u)^2+d_G(v)^2} of all edges uv uv of G G , where dG(u) d_G(u) denotes the degree of vertex u u in G G . The Sombor coindex was recently defined as SO(G)=uvE(G)dG(u)2+dG(v)2 \overline{SO}(G) = \sum_{uv\notin E(G)}\sqrt{d_G(u)^2+d_G(v)^2} . As a new vertex-degree-based topological index, the Sombor index is important because it has been proved to predict certain physicochemical properties. Two-trees are very important structures in complex networks. In this paper, the maximum and second maximum Sombor index, the minimum and second minimum Sombor coindex of two-trees and the extremal two-trees are determined, respectively. Besides, some problems are proposed for further research

    A Survey of the Evolution of Language Model-Based Dialogue Systems

    Full text link
    Dialogue systems, including task-oriented_dialogue_system (TOD) and open-domain_dialogue_system (ODD), have undergone significant transformations, with language_models (LM) playing a central role. This survey delves into the historical trajectory of dialogue systems, elucidating their intricate relationship with advancements in language models by categorizing this evolution into four distinct stages, each marked by pivotal LM breakthroughs: 1) Early_Stage: characterized by statistical LMs, resulting in rule-based or machine-learning-driven dialogue_systems; 2) Independent development of TOD and ODD based on neural_language_models (NLM; e.g., LSTM and GRU), since NLMs lack intrinsic knowledge in their parameters; 3) fusion between different types of dialogue systems with the advert of pre-trained_language_models (PLMs), starting from the fusion between four_sub-tasks_within_TOD, and then TOD_with_ODD; and 4) current LLM-based_dialogue_system, wherein LLMs can be used to conduct TOD and ODD seamlessly. Thus, our survey provides a chronological perspective aligned with LM breakthroughs, offering a comprehensive review of state-of-the-art research outcomes. What's more, we focus on emerging topics and discuss open challenges, providing valuable insights into future directions for LLM-based_dialogue_systems. Through this exploration, we pave the way for a deeper_comprehension of the evolution, guiding future developments in LM-based dialogue_systems

    Carbon dioxide partial pressures and emissions of the Yarlung Tsangpo River on the Tibetan Plateau

    Get PDF
    Rivers are important routes for material and energy transport between terrestrial and marine ecosystems. Recent global-scale assessments of carbon (C) have suggested that C emission fluxes to the atmosphere are comparable to the fluvial C fluxes to the ocean. However, many previous studies only collected data from inland rivers in low altitude regions. Therefore, it remains unclear how plateau rivers affect C flux. In this study, 20 monitoring sites were set up along the Yarlung Tsangpo (YT) River on the Tibetan Plateau and detailed observations were carried out in the wet and dry seasons. The riverine CO2 fluxes exhibited significant seasonal patterns which ranged from 597.12 ± 292.63 μatm in the wet season to 368.72 ± 123.50 μatm in the dry season. The CO2 emission flux (FCO2) obtained from floating chamber method, ranging from 8.44 ± 6.94 mmol m−2 d−1 in sunmmer to 3.62 ± 6.32 mmol m−2 d−1 in winter, with an average value of 6.03 mmol m−2 d−1. Generally, the river was a weak carbon source with respect to the atmosphere. However, the pCO2 and FCO2 were much lower than that for other large rivers around the globe, which were obviously restrained by the weak microbial activities due to the low primary productivity and carbonate buffer activities in the carbonate background. Carbon loss via atmosphere exchange in the YT River on the plateau accounted for 2.2% and 10.6% of the riverine dissolved carbon fluxes (67.77 × 109 mol a−1) according to the floating chamber and thin boundary layer methods, respectively. The YT River probably acts as a “pipeline” to transport weathered nutrients from the plateau to downstream areas. Our results demonstrated the characteristics of a “weak outgassing effect and a high transport flux of carbon” for the plateau river, which is different from rivers on plains. Considering the global relevance of Tibetan Plateau, further studies with enhanced spatiotemporal resolution are needed to better understand the important role of plateau rivers on carbon budgets and climate change over both regional and global cycles

    A Wall-Associated Kinase Gene CaWAKL20 From Pepper Negatively Modulates Plant Thermotolerance by Reducing the Expression of ABA-Responsive Genes

    Get PDF
    Heat stress has become a major threat to crop production due to global warming; however, the mechanisms underlying plant high-temperature sensing are not well known. In plants, the membrane-anchored receptor-like kinases (RLKs) relay environmental signals into the cytoplasm. In a previous study, we isolated a wall-associated RLK-like (WAKL) gene CaWAKL20 from pepper (Capsicum annuum L.). Here, the amino acid sequence of CaWAKL20 was characterized and found to consist of conserved domains of WAK/WAKL family, including an extracellular region containing a GUB-WAK binding domain and a degenerated EGF2-like domain; a transmembrane region; and an intercellular region with an STKc catalytic domain. Moreover, CaWAKL20 transcription was inhibited by heat stress, whereas it was induced by both ABA and H2O2 treatments. Silencing of CaWAKL20 enhanced pepper thermotolerance, while overexpression decreased Arabidopsis thermotolerance. Additionally, Arabidopsis lines overexpressing CaWAKL20 showed less sensitivity to ABA during seed germination and root growth. Finally, the survival rate of Arabidopsis seedlings under heat stress treatment was enhanced by ABA pre-treatment, while it was compromised by the overexpression of CaWAKL20. Furthermore, the heat-induced expression of several ABA-responsive genes and some key regulator genes for thermotolerance was decreased in Arabidopsis CaWAKL20-overexpression lines. These results suggest that CaWAKL20 negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes, laying a foundation for further investigation into the functional mechanisms of WAKs/WAKLs in plants undergoing environmental stresses

    Immunization of Mice with Recombinant Protein CobB or AsnC Confers Protection against Brucella abortus Infection

    Get PDF
    Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy
    corecore