2 research outputs found

    Concentration and Physical Characteristics of Black Carbon in Winter Snow of Beijing in 2015

    No full text
    In Beijing, the probability of snowfall is decreasing as a result of global warming. At the same time, Beijing has suffered severe air pollution. In this paper, the concentration and particle size characteristics of BC (Black Carbon) in snow during the winter of 2015 in Beijing were analyzed by the SP2 method. The average concentration of BC in snow meltwater in Beijing is 82 ng/mL, with a minimum value of 62.9 ng/mL and a maximum of 210.6 ng/mL. The BC particle size in snow and ice in the Beijing area is mostly concentrated in the range of 70–400 nm. After log-normal, the BC particle size above 600 nm is still small, which should be closely related to the nature of the local BC emission source. The concentration of BC in snow is highly susceptible to meteorological conditions and local pollution levels. When Beijing is under the control of the east wind or the southeast wind, aerosols in the urban areas can easily accumulate in the northwestern mountains and then settle or participate in the snowfall process, resulting in an increase in BC aerosol accumulation in the snow, thus further changing the optical properties of snow in the Beijing area

    Intercomparisons on the Vertical Profiles of Cloud Microphysical Properties From CloudSat Retrievals Over the North China Plain

    No full text
    International audienceAbstract Vertical profiles of cloud microphysical properties importantly determine the lifetime and precipitation rate of clouds. The 94‐GHz cloud profiling radar (CPR) onboard the CloudSat satellite can measure the vertical profile of radar reflectivity, from which the microphysical properties of cloud can be retrieved. The retrievals bear variations due to various assumptions and auxiliary products used. This study targets on the mid‐latitude clouds in the northern hemisphere, and intercompares the CloudSat products describing the vertical profiles of cloud microphysics and evaluate the uncertainties for each retrieval algorithm, with further evaluation by aircraft in‐situ observations over the North China Plain region during 2013–2017. For those retrieval products performing phase apportion, the ambient temperature‐based linear apportioning on mixed‐phase clouds can produce reasonable estimation on ice water content, apart from the heavily precipitating clouds. The retrieved liquid water content constrained by cloud optical depth well matched in‐situ observations, however its effective size is overestimated (hereby underestimating the number concentration of water droplets) because of the influence of larger precipitating hydrometeors on size distribution. The CPR‐only retrieval can well produce the effective diameter and number concentration of ice for deep convection clouds, but using additional lidar constraint underestimates the effective diameter due to the intense attenuation by thick clouds. The analysis here suggests the appropriate parameters from various products for different cloud types, and provides guidance for future development of retrieval algorithms on vertical profiles of cloud microphysical properties
    corecore