86 research outputs found

    Diffuse large B-cell lymphoma: sub-classification by massive parallel quantitative RT-PCR.

    Get PDF
    Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity with remarkably variable clinical outcome. Gene expression profiling (GEP) classifies DLBCL into activated B-cell like (ABC), germinal center B-cell like (GCB), and Type-III subtypes, with ABC-DLBCL characterized by a poor prognosis and constitutive NF-κB activation. A major challenge for the application of this cell of origin (COO) classification in routine clinical practice is to establish a robust clinical assay amenable to routine formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies. In this study, we investigated the possibility of COO-classification using FFPE tissue RNA samples by massive parallel quantitative reverse transcription PCR (qRT-PCR). We established a protocol for parallel qRT-PCR using FFPE RNA samples with the Fluidigm BioMark HD system, and quantified the expression of the COO classifier genes and the NF-κB targeted-genes that characterize ABC-DLBCL in 143 cases of DLBCL. We also trained and validated a series of basic machine-learning classifiers and their derived meta classifiers, and identified SimpleLogistic as the top classifier that gave excellent performance across various GEP data sets derived from fresh-frozen or FFPE tissues by different microarray platforms. Finally, we applied SimpleLogistic to our data set generated by qRT-PCR, and the ABC and GCB-DLBCL assigned showed the respective characteristics in their clinical outcome and NF-κB target gene expression. The methodology established in this study provides a robust approach for DLBCL sub-classification using routine FFPE diagnostic biopsies in a routine clinical setting.The research in Du lab was supported by research grants (LLR10006 & LLR13006) from Leukaemia & Lymphoma Research, U.K. XX was supported by a visiting fellowship from the China Scholarship Council, Ministry of Education, P.R. China.This is the accepted manuscript. The final version is available from NPG at http://www.nature.com/labinvest/journal/v95/n1/full/labinvest2014136a.html

    Gearbox Fault Diagnosis Method Based on Improved MobileNetV3 and Transfer Learning

    Get PDF
    Under different working conditions of gearbox, the feature extraction of fault signals is difficult, and large difference in data distribution affects the fault diagnosis results. Based on the problems, the research proposes a method based on improved MobileNetV3 network and transfer learning (TL-Pro-MobilenetV3 network). Three time-frequency analysis methods are used to obtain time-frequency distribution. Among them, short time Fourier transform (STFT) combined with Pro-MobilenetV3 network takes the shortest time and has the highest accuracy. Furthermore, transfer learning is introduced into the model, and the optimal training parameters are selected training the network. Using the dataset from Southeast University, the TL-Pro-MobilenetV3 model is compared with four classical fault diagnosis models. The experimental results show the accuracy of the method proposed can reach 100% and the training time is the shortest in two working conditions, proving the proposed model has a good performance in generalization ability, recognition accuracy and training time

    Semantic Communications for Wireless Sensing: RIS-aided Encoding and Self-supervised Decoding

    Full text link
    Semantic communications can reduce the resource consumption by transmitting task-related semantic information extracted from source messages. However, when the source messages are utilized for various tasks, e.g., wireless sensing data for localization and activities detection, semantic communication technique is difficult to be implemented because of the increased processing complexity. In this paper, we propose the inverse semantic communications as a new paradigm. Instead of extracting semantic information from messages, we aim to encode the task-related source messages into a hyper-source message for data transmission or storage. Following this paradigm, we design an inverse semantic-aware wireless sensing framework with three algorithms for data sampling, reconfigurable intelligent surface (RIS)-aided encoding, and self-supervised decoding, respectively. Specifically, on the one hand, we propose a novel RIS hardware design for encoding several signal spectrums into one MetaSpectrum. To select the task-related signal spectrums for achieving efficient encoding, a semantic hash sampling method is introduced. On the other hand, we propose a self-supervised learning method for decoding the MetaSpectrums to obtain the original signal spectrums. Using the sensing data collected from real-world, we show that our framework can reduce the data volume by 95% compared to that before encoding, without affecting the accomplishment of sensing tasks. Moreover, compared with the typically used uniform sampling scheme, the proposed semantic hash sampling scheme can achieve 67% lower mean squared error in recovering the sensing parameters. In addition, experiment results demonstrate that the amplitude response matrix of the RIS enables the encryption of the sensing data

    Optimizing Mobile-Edge AI-Generated Everything (AIGX) Services by Prompt Engineering: Fundamental, Framework, and Case Study

    Full text link
    As the next-generation paradigm for content creation, AI-Generated Content (AIGC), i.e., generating content automatically by Generative AI (GAI) based on user prompts, has gained great attention and success recently. With the ever-increasing power of GAI, especially the emergence of Pretrained Foundation Models (PFMs) that contain billions of parameters and prompt engineering methods (i.e., finding the best prompts for the given task), the application range of AIGC is rapidly expanding, covering various forms of information for human, systems, and networks, such as network designs, channel coding, and optimization solutions. In this article, we present the concept of mobile-edge AI-Generated Everything (AIGX). Specifically, we first review the building blocks of AIGX, the evolution from AIGC to AIGX, as well as practical AIGX applications. Then, we present a unified mobile-edge AIGX framework, which employs edge devices to provide PFM-empowered AIGX services and optimizes such services via prompt engineering. More importantly, we demonstrate that suboptimal prompts lead to poor generation quality, which adversely affects user satisfaction, edge network performance, and resource utilization. Accordingly, we conduct a case study, showcasing how to train an effective prompt optimizer using ChatGPT and investigating how much improvement is possible with prompt engineering in terms of user experience, quality of generation, and network performance.Comment: 9 pages, 6 figur

    Generative AI for Integrated Sensing and Communication: Insights from the Physical Layer Perspective

    Full text link
    As generative artificial intelligence (GAI) models continue to evolve, their generative capabilities are increasingly enhanced and being used extensively in content generation. Beyond this, GAI also excels in data modeling and analysis, benefitting wireless communication systems. In this article, we investigate applications of GAI in the physical layer and analyze its support for integrated sensing and communications (ISAC) systems. Specifically, we first provide an overview of GAI and ISAC, touching on GAI's potential support across multiple layers of ISAC. We then concentrate on the physical layer, investigating GAI's applications from various perspectives thoroughly, such as channel estimation, and demonstrate the value of these GAI-enhanced physical layer technologies for ISAC systems. In the case study, the proposed diffusion model-based method effectively estimates the signal direction of arrival under the near-field condition based on the uniform linear array, when antenna spacing surpassing half the wavelength. With a mean square error of 1.03 degrees, it confirms GAI's support for the physical layer in near-field sensing and communications

    A Unified Blockchain-Semantic Framework for Wireless Edge Intelligence Enabled Web 3.0

    Full text link
    Web 3.0 enables user-generated contents and user-selected authorities. With decentralized wireless edge computing architectures, Web 3.0 allows users to read, write, and own contents. A core technology that enables Web 3.0 goals is blockchain, which provides security services by recording content in a decentralized and transparent manner. However, the explosion of on-chain recorded contents and the fast-growing number of users cause increasingly unaffordable computing and storage resource consumption. A promising paradigm is to analyze the semantic information of contents that can convey precisely the desired meanings without consuming many resources. In this article, we propose a unified blockchain-semantic ecosystems framework for wireless edge intelligence-enabled Web 3.0. Our framework consists of six key components to exchange semantic demands. We then introduce an Oracle-based proof of semantic mechanism to implement on-chain and off-chain interactions of Web 3.0 ecosystems on semantic verification algorithms while maintaining service security. An adaptive Deep Reinforcement Learning-based sharding mechanism on Oracle is designed to improve interaction efficiency, which can facilitate Web 3.0 ecosystems to deal with varied semantic demands. Finally, a case study is presented to show that the proposed framework can dynamically adjust Oracle settings according to varied semantic demands.Comment: 8 pages, 5 figures, 1 tabl

    A Unified Framework for Integrating Semantic Communication and AI-Generated Content in Metaverse

    Full text link
    As the Metaverse continues to grow, the need for efficient communication and intelligent content generation becomes increasingly important. Semantic communication focuses on conveying meaning and understanding from user inputs, while AI-Generated Content utilizes artificial intelligence to create digital content and experiences. Integrated Semantic Communication and AI-Generated Content (ISGC) has attracted a lot of attentions recently, which transfers semantic information from user inputs, generates digital content, and renders graphics for Metaverse. In this paper, we introduce a unified framework that captures ISGC two primary benefits, including integration gain for optimized resource allocation and coordination gain for goal-oriented high-quality content generation to improve immersion from both communication and content perspectives. We also classify existing ISGC solutions, analyze the major components of ISGC, and present several use cases. We then construct a case study based on the diffusion model to identify an optimal resource allocation strategy for performing semantic extraction, content generation, and graphic rendering in the Metaverse. Finally, we discuss several open research issues, encouraging further exploring the potential of ISGC and its related applications in the Metaverse.Comment: 8 pages, 6 figure

    Generative AI-enabled Vehicular Networks: Fundamentals, Framework, and Case Study

    Full text link
    Recognizing the tremendous improvements that the integration of generative AI can bring to intelligent transportation systems, this article explores the integration of generative AI technologies in vehicular networks, focusing on their potential applications and challenges. Generative AI, with its capabilities of generating realistic data and facilitating advanced decision-making processes, enhances various applications when combined with vehicular networks, such as navigation optimization, traffic prediction, data generation, and evaluation. Despite these promising applications, the integration of generative AI with vehicular networks faces several challenges, such as real-time data processing and decision-making, adapting to dynamic and unpredictable environments, as well as privacy and security concerns. To address these challenges, we propose a multi-modality semantic-aware framework to enhance the service quality of generative AI. By leveraging multi-modal and semantic communication technologies, the framework enables the use of text and image data for creating multi-modal content, providing more reliable guidance to receiving vehicles and ultimately improving system usability and efficiency. To further improve the reliability and efficiency of information transmission and reconstruction within the framework, taking generative AI-enabled vehicle-to-vehicle (V2V) as a case study, a deep reinforcement learning (DRL)-based approach is proposed for resource allocation. Finally, we discuss potential research directions and anticipated advancements in the field of generative AI-enabled vehicular networks.Comment: 8 pages, 4 figure
    corecore