27 research outputs found
Porcine reproductive and respiratory syndrome virus inhibits MARC-145 proliferation via inducing apoptosis and G2/M arrest by activation of Chk/Cdc25C and p53/p21 pathway
Abstract Porcine reproductive and respiratory syndrome virus(PRRSV) is an important immunosuppressive virus which can suppresses infected cells proliferation. In this work, we examined PRRSV ability to manipulate cell cycle progression of MARC-145 cells and explored the potential molecular mechanisms. The results showed that PRRSV infection imposed a growth-inhibitory effect on MARC-145 cells by inducing cell cycle arrest at G2/M phase. This arrest was due to the significant decrease of Cdc2-cyclinB1 complex activity in PRRSV-infected cells and the activity reduction was a result of Cdc2 Tyr15 phosphorylation and the accumulation of Cdc2 and cyclinB1 in the nucleus. Not only elevated Wee1 and Myt1 expression and inactivated Cdc25C, but also increase of p21 and 14–3-3σ in a p53-dependent manner caused the inhibitory Tyr15 phosphorylation of Cdc2. PRRSV infection also activated Chk1. Our data suggest PRRSV infection induces G2/M arrest via various molecular regulatory mechanisms. These results provide a new insights for PRRSV pathogenesis
Porcine reproductive and respiratory syndrome virus inhibits MARC-145 proliferation via inducing apoptosis and G2/M arrest by activation of Chk/Cdc25C and p53/p21 pathway
Abstract Porcine reproductive and respiratory syndrome virus(PRRSV) is an important immunosuppressive virus which can suppresses infected cells proliferation. In this work, we examined PRRSV ability to manipulate cell cycle progression of MARC-145 cells and explored the potential molecular mechanisms. The results showed that PRRSV infection imposed a growth-inhibitory effect on MARC-145 cells by inducing cell cycle arrest at G2/M phase. This arrest was due to the significant decrease of Cdc2-cyclinB1 complex activity in PRRSV-infected cells and the activity reduction was a result of Cdc2 Tyr15 phosphorylation and the accumulation of Cdc2 and cyclinB1 in the nucleus. Not only elevated Wee1 and Myt1 expression and inactivated Cdc25C, but also increase of p21 and 14–3-3σ in a p53-dependent manner caused the inhibitory Tyr15 phosphorylation of Cdc2. PRRSV infection also activated Chk1. Our data suggest PRRSV infection induces G2/M arrest via various molecular regulatory mechanisms. These results provide a new insights for PRRSV pathogenesis
MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is an important swine disease worldwide. PRRSV has a limited tropism for certain cells, which may at least in part be attributed to the expression of the necessary cellular molecules serving as the virus receptors or factors on host cells for virus binding or entry. However, these molecules conferring PRRSV infection have not been fully characterized. Here we show the identification of non-muscle myosin heavy chain 9 (MYH9) as an essential factor for PRRSV infection using the anti-idiotypic antibody specific to the PRRSV glycoprotein GP5. MYH9 physically interacts with the PRRSV GP5 protein via its C-terminal domain and confers susceptibility of cells to PRRSV infection. These findings indicate that MYH9 is an essential factor for PRRSV infection and provide new insights into PRRSV-host interactions and viral entry, potentially facilitating development of control strategies for this important swine disease
Major Vault Protein Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection in CRL2843CD163 Cell Lines and Primary Porcine Alveolar Macrophages
Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type â… interferon (IFN) production. In this study, we evaluated the effect of MVP on PRRSV infection in CRL2843CD163 cell lines and porcine alveolar macrophages (PAMs). Our results showed that MVP expression was downregulated by PRRSV infection. Adenoviral overexpression of MVP inhibited PRRSV replication, whereas the siRNA knockdown of MVP promoted PRRSV replication. In addition, MVP knockdown has an adverse effect on the inhibitive role of MVP overexpression on PRRSV replication. Moreover, MVP could induce the expression of type â… IFNs and IFN-stimulated gene 15 (ISG15) in PRRSV-infected PAMs. Based on these results, MVP may be a potential molecular target of drugs for the effective prevention and treatment of PRRSV infection
LysGH15, a Novel Bacteriophage Lysin, Protects a Murine Bacteremia Model Efficiently against Lethal Methicillin-Resistant Staphylococcus aureus Infectionâ–¿
Phage-coded lysin is an enzyme that destroys the cell walls of bacteria. Phage lysin could be an alternative to conventional antibiotic therapy against pathogens that are resistant to multiple antibiotics. In this study, a novel staphylococcal phage, GH15, was isolated, and the endogenous lytic enzyme (LysGH15) was expressed and purified. The lysin LysGH15 displayed a broad lytic spectrum; in vitro treatment killed a number of Staphylococcus aureus strains rapidly and completely, including methicillin-resistant S. aureus (MRSA). In animal experiments, a single intraperitoneal injection of LysGH15 (50 μg) administered 1 h after MRSA injections at double the minimum lethal dose was sufficient to protect mice (P < 0.01). Bacteremia in unprotected mice reached colony counts of about 107 CFU/ml within 3.5 h after challenge, whereas the mean colony count in lysin-protected mice was less than 104 CFU/ml (and ultimately became undetectable). These results indicate that LysGH15 can kill S. aureus in vitro and can protect mice efficiently from bacteremia in vivo. The phage lysin LysGH15 might be an alternative treatment strategy for infections caused by MRSA
Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus
Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625DFCP628, 458PSRPF462, and 407EPTV410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design. IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo. Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts
Major Vault Protein Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection in CRL2843<sup>CD163</sup> Cell Lines and Primary Porcine Alveolar Macrophages
Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type â… interferon (IFN) production. In this study, we evaluated the effect of MVP on PRRSV infection in CRL2843CD163 cell lines and porcine alveolar macrophages (PAMs). Our results showed that MVP expression was downregulated by PRRSV infection. Adenoviral overexpression of MVP inhibited PRRSV replication, whereas the siRNA knockdown of MVP promoted PRRSV replication. In addition, MVP knockdown has an adverse effect on the inhibitive role of MVP overexpression on PRRSV replication. Moreover, MVP could induce the expression of type â… IFNs and IFN-stimulated gene 15 (ISG15) in PRRSV-infected PAMs. Based on these results, MVP may be a potential molecular target of drugs for the effective prevention and treatment of PRRSV infection
Platycodin D Suppresses Type 2 Porcine Reproductive and Respiratory Syndrome Virus In Primary and Established Cell Lines
Porcine reproductive and respiratory syndrome virus (PRRSV) is a continuous threat to the pork industry as it continues to cause significant economic loss worldwide. Currently, vaccination strategies provide very limited protection against PRRSV transmission. Consequently, there is an urgent need to develop new antiviral strategies. Platycodin D (PD) is one of the major bioactive triterpenoid saponins derived from Platycodon grandiflorum, a traditional Chinese medicine used as an expectorant for pulmonary diseases and a remedy for respiratory disorders. Here, we demonstrate that PD exhibits potent activity against PRRSV infection in Marc-145 cells and primary porcine alveolar macrophages. PD exhibited broad-spectrum inhibitory activities in vitro against high pathogenic type 2 PRRSV GD-HD strain and GD-XH strain as well as classical CH-1a and VR2332 strains. PD at concentrations ranging 1⁻4 μM significantly inhibited PRRSV RNA synthesis, viral protein expression and progeny virus production in a dose-dependent manner. EC50 values of PD against four tested PRRSV strains infection in Marc-145 cells ranged from 0.74 to 1.76 μM. Mechanistically, PD inhibited PRRSV replication by directly interacting with virions therefore affecting multiple stages of the virus life cycle, including viral entry and progeny virus release. In addition, PD decreased PRRSV- and LPS-induced cytokine (IFN-α, IFN-β, IL-1α, IL-6, IL-8 and TNF-α) production in PAMs. Altogether, our findings suggested that PD is a potent inhibitor of PPRSV infection in vitro. However, further in vivo studies are necessary to confirm PD as a potential novel and effective PPRSV inhibitor in swine
Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection
Abstract Background Porcine reproductive and respiratory syndrome virus (PRRSV) could lead to pandemic diseases and huge financial losses to the swine industry worldwide. Curcumin, a natural compound, has been reported to serve as an entry inhibitor of hepatitis C virus, chikungunya virus and vesicular stomatitis virus. In this study, we investigated the potential effect of curcumin on early stages of PRRSV infection. Results Curcumin inhibited infection of Marc-145 cells and porcine alveolar macrophages (PAMs) by four different genotype 2 PRRSV strains, but had no effect on the levels of major PRRSV receptor proteins on Marc-145 cells and PAMs or on PRRSV binding to Marc-145 cells. However, curcumin did block two steps of the PRRSV infection process: virus internalization and virus-mediated cell fusion. Conclusions Our results suggested that an inhibition of genotype 2 PRRSV infection by curcumin is virus strain-independent, and mainly inhibited by virus internalization and cell fusion mediated by virus. Collectively, these results demonstrate that curcumin holds promise as a new anti-PRRSV drug