67 research outputs found

    ChinaTelecom System Description to VoxCeleb Speaker Recognition Challenge 2023

    Full text link
    This technical report describes ChinaTelecom system for Track 1 (closed) of the VoxCeleb2023 Speaker Recognition Challenge (VoxSRC 2023). Our system consists of several ResNet variants trained only on VoxCeleb2, which were fused for better performance later. Score calibration was also applied for each variant and the fused system. The final submission achieved minDCF of 0.1066 and EER of 1.980%.Comment: System description of VoxSRC 202

    The signature of pyroptosis-related gene prognostic and immune microenvironment in adrenocortical carcinoma

    Get PDF
    Adrenocortical carcinoma (ACC) has a low incidence but a poor prognosis. And ACC has complex clinical manifestations and limited treatment. Pyroptosis has a dual character and has both positive and negative effects on cancer. However, the role of pyroptosis-related genes (PRGs) in ACC and the impact on ACC progression remains unelucidated. This study performed systematic bioinformatics analysis and basic experimental validation to enable the establishment of prognostic models and demonstrate levels of immune infiltration. Pearson’s correlation analysis was used to assess the association of PRGs with tumor immune infiltration, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoints. There 4 PRGs were upregulated, and 25 PRGs were downregulated in ACC. At the same time, we analyzed and reviewed the genetic mutation variation landscape of PRGs. Functional enrichment analysis was also performed to clarify the function of PRGs. Pyroptosis, the inflammatory response, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway are the functions and pathways mainly involved and exerted effects by these 33 PRGs. The results of the prognosis analysis revealed high expression of CASP3, CASP9, GSDMB, GSDMD, NLRC4, PRKACA, and SCAF11 caused a poor survival rate for ACC patients. The above seven PRGs were screened by the optimal λ value of LASSO Cox analysis, and the five selected genes (CASP3, CASP9, GSDMB, GSDMD, NLRC4) were involved in constructing a prognostic PRGs model which enables the overall survival in ACC patients can be predicted with moderate to high accuracy. Prognostic PRGs, especially CASP9, which is the independent factor of ACC prognosis, may be closely correlated with immune-cell infiltration, tumor mutation burden, microsatellite instability, and immune checkpoints. Quantitative Real-Time PCR (qRT-PCR), Western blot and immunohistochemical were performed to validate the mRNA expression levels of CASP9 in adjacent normal tissues and ACC tissues. According to the result of immune checkpoints analysis, NLRC4 and GSDMB may be identified as potential therapeutic targets. In conclusion, we established a prognostic model of PRG characteristics in ACC and analyzed the relationship between PRGs and immune infiltration. Through our study, it may be helpful to find the mechanism of pyroptosis in ACC

    Spatiotemporal dynamic of subtropical forest carbon storage and its resistance and resilience to drought in China

    Get PDF
    Subtropical forests are rich in vegetation and have high photosynthetic capacity. China is an important area for the distribution of subtropical forests, evergreen broadleaf forests (EBFs) and evergreen needleleaf forests (ENFs) are two typical vegetation types in subtropical China. Forest carbon storage is an important indicator for measuring the basic characteristics of forest ecosystems and is of great significance for maintaining the global carbon balance. Drought can affect forest activity and may even lead to forest death and the stability characteristics of different forest ecosystems varied after drought events. Therefore, this study used meteorological data to simulate the standardized precipitation evapotranspiration index (SPEI) and the Biome-BGC model to simulate two types of forest carbon storage to quantify the resistance and resilience of EBF and ENF to drought in the subtropical region of China. The results show that: 1) from 1952 to 2019, the interannual drought in subtropical China showed an increasing trend, with five extreme droughts recorded, of which 2011 was the most severe one; 2) the simulated average carbon storage of the EBF and ENF during 1985-2019 were 130.58 t·hm-2 and 78.49 t·hm-2, respectively. The regions with higher carbon storage of EBF were mainly concentrated in central and southeastern subtropics, where those of ENF mainly distributed in the western subtropic; 3) The median of resistance of EBF was three times higher than that of ENF, indicating the EBF have stronger resistance to extreme drought than ENF. Moreover, the resilience of two typical forest to 2011 extreme drought and the continuous drought events during 2009 - 2011 were similar. The results provided a scientific basis for the response of subtropical forests to drought, and indicating that improve stand quality or expand the plantation of EBF may enhance the resistance to drought in subtropical China, which provided certain reference for forest protection and management under the increasing frequency of drought events in the future

    Structural Insights Into Ligand Recognition and Selectivity of Somatostatin Receptors

    Get PDF
    Somatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of Gi1-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of Gi1-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively. By comparison of the SSTR structures in different states, molecular mechanisms of agonism and antagonism were illustrated. Together with computational and functional analyses, the key determinants responsible for ligand recognition and selectivity of different SSTR subtypes and multiform binding modes of peptide and non-peptide ligands were identified. Insights gained in this study will help uncover ligand selectivity of various SSTRs and accelerate the development of new molecules with better efficacy by targeting SSTRs

    Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol drinking-related mutation signature and genomic alterations

    Get PDF
    Approximately half of the world's 500,000 new oesophageal squamous-cell carcinoma (ESCC) cases each year occur in China. Here, we show whole-genome sequencing of DNA and RNA in 94 Chinese individuals with ESCC. We identify six mutational signatures (E1–E6), and Signature E4 is unique in ESCC linked to alcohol intake and genetic variants in alcohol-metabolizing enzymes. We discover significantly recurrent mutations in 20 protein-coding genes, 4 long non-coding RNAs and 10 untranslational regions. Functional analyses show six genes that have recurrent copy-number variants in three squamous-cell carcinomas (oesophageal, head and neck and lung) significantly promote cancer cell proliferation, migration and invasion. The most frequently affected genes by structural variation are LRP1B and TTC28. The aberrant cell cycle and PI3K-AKT pathways seem critical in ESCC. These results establish a comprehensive genomic landscape of ESCC and provide potential targets for precision treatment and prevention of the cancer

    Preliminary investigation of the effect of non-cardiac surgery on intraoperative islet and renal function: a single-center prospective cohort study

    Get PDF
    BackgroundThe effect of different non-cardiac surgical methods on islet and renal function remains unclear. We conducted a preliminary investigation to determine whether different surgical methods affect islet function or cause further damage to renal function.MethodsIn this prospective cohort study, the clinical data of 63 adult patients who underwent non-cardiac surgery under general anesthesia were evaluated from February 2019 to January 2020. Patients were divided into the abdominal surgery group, the laparoscopic surgery group, and the breast cancer surgery group. The primary outcome was the difference between the effects of different surgical methods on renal function.ResultsIslet and renal function were not significantly different between the groups. The correlation analysis showed that hematocrit (HCT) and hemoglobin (HB) were negatively correlated with fasting plasma glucose (FPG) (p < 0.05), MAP was positively correlated with C-peptide (p < 0.05), and HCT and Hb were positively correlated with serum creatinine (SCr) (p < 0.05). Fasting insulin (FINS) and C-peptide were negatively correlated with SCr (p < 0.05), and the homeostatic model assessment of insulin resistance (HOMA-IR) was positively correlated with SCr (p < 0.05). FINS, C-peptide, HOMA-IR, and the homeostatic model assessment of β-cell function (HOMA-β) were positively correlated with cystatin C (Cys C) (p < 0.05).ConclusionFINS, C-peptide, and HOMA-IR had positive effects on beta-2-microglobulin (β2-MG). FINS, C-peptide, and HOMA-IR were positively correlated with Cys C and β2-Mg. While FINS and C-peptide were negatively correlated with SCr, HOMA-IR was positively correlated with SCr

    Antidepressant Effects of Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex of Parkinson's Disease Patients With Depression: A Meta-Analysis

    Get PDF
    Objective: The purpose of this meta-analysis was to investigate the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex (PFC) of patients with Parkinson's disease (PD) and to determine the optimal rTMS parameters, such as the intensity, frequency and the delivered pattern of rTMS stimulation.Methods: EMBASE, PubMed, Web of Science, MEDLINE, and Cochrane data bases were researched for papers published before March 12, 2018. Studies investigating the anti-depression effects of rTMS over PFC in patients with PD were considered. The main outcomes of pre- and post-rTMS treatment as well as score changes were all extracted. The mean effect size was estimated by calculating the standardized mean difference (SMD) with 95% confidence interval (CI) by using fixed or random effect models as appropriate.Results: Nine studies containing 137 PD patients with depression were included. The pooled results showed significant pre-post anti-depressive effects of rTMS over PFC in PD patients with depression (SMD = −0.80, P < 0.00001). The subgroup analyses of stimulation intensity, frequencies, and models also revealed significant effects (Intensities: 90% RMT: SMD = −1.16, P = 0.0006; >100% RMT: SMD = −0.82, P < 0.0001. Frequencies: < 1.0 Hz: SMD = −0.83, P = 0.03; 5.0 Hz: SMD = −1.10, P < 0.0001; ≥10.0 Hz: SMD = −0.55, P = 0.02. Models: Continuous: SMD = −0.79, P < 0.0001; Discontinuous: SMD = −0.84, P = 0.02). But the results of the studies with place-controlled designs were not significant (Overall: SMD = −0.27, P = 0.54. Intensities: 90% RMT: SMD = 0.27, P = 0.68; 100% RMT: SMD = −0.32, P = 0.33. Frequencies: 5.0 Hz: SMD = −0.87, P = 0.10; ≥10.0 Hz: SMD = 0.27, P = 0.66. Models: Continuous: SMD = −0.28, P = 0.68; Discontinuous: SMD = −0.32, P = 0.33). The greater effect sizes of rTMS with 90% RMT, 5.0 Hz in discontinuous days can be observed rather than the other parameters in both kinds of analyses across study design.Conclusions: rTMS may have a significant positive pre-post anti-depressive effect over PFC on patients with depression, especially by using 5.0 Hz frequency with 90% RMT intensity in discontinuous days, which may produce better effects than other parameters. The real effect, though, was not different from that of the placebo. Future studies with larger sample sizes and high-quality studies are needed to further corroborate our results and to identify the optimal rTMS protocols

    The inferiors imitate the superiors: the government’s low-carbon concerns and the renewable energy technology of firms

    No full text
    Abstract Existing research has focused mainly on the technological effects of rigid constraints such as low-carbon policies, but there has been little exploration of flexible constraints such as the government’s low-carbon concerns. To explore the role of flexible low-carbon constraints and effective paths for achieving low-carbon development, this paper theoretically and empirically investigates the influence of the government’s low-carbon concerns on local firms’ innovation in renewable energy technology and the underlying mechanism. Benchmark analysis shows that the government’s low-carbon concerns can improve renewable energy technology among firms in an area. Mechanism analysis reveals that low-carbon concerns promote firms’ renewable energy technology adoption by increasing the amount of research and development (R&D) investment and government subsidies and energy use costs of firms in the area. Heterogeneity analysis reveals that heterogeneity exists across technologies, firms, industries and locations in terms of the incentive impact of the government’s low-carbon concerns on the level of renewable energy technology innovation. Extensive analysis indicates that the government’s low-carbon concerns have a long-term incentive impact on the renewable energy technology of local firms and a positive demonstration impact on the renewable energy technology of neighboring firms. This study is helpful in that it explores the major driving factors behind the creation of a low-carbon economy and the achievement of climate targets

    Can firms achieve the collaborative governance of airborne pollution and greenhouse gases? Evidence from the Chinese industrial sector

    No full text
    The rapid global industrialization and urbanization processes, especially in developing countries, have caused serious environmental pollution and climate warming. The industrial sector, in which high energy consumption is its main feature, is an important source of airborne pollution and greenhouse gases. The effective realization of collaborative emission reduction in the industrial sector has become an important path worldwide to reduce pollution and carbon in the future. Based on matched data on industrial firms, this study uses a fixed effects model, the two-stage least squares method, quantile regression and an interaction regression model to explore the co-benefits of airborne pollution and greenhouse gas emission reduction from a microscale perspective. Benchmark analysis demonstrates that for every 1% decrease in the airborne pollution emissions of firms, the greenhouse gas emissions of firms decrease by approximately 0.014%. According to heterogeneity analysis, the electric power, heat production and supply industry; the coal mining and washing industry; the leather, fur, feather and related products industry; the ferrous metal ore mining and dressing industry; and the petroleum, coal and other fuel processing industry are ripe for reduction at lower costs. Furthermore, feasibility analysis reveals that firms' sulfur reduction behavior and the government's sulfur reduction legislation may result in collaborative greenhouse gas emission reductions while regulating airborne pollution. This research can help countries meet multiple emission reduction goals by facilitating the optimization of joint emission reduction methods that target numerous pollutants

    Analysis of the energy-minimization multiscale model with multiobjective optimization

    No full text
    Gas solid two-phase flow is ubiquitous in nature and many engineering fields, such as chemical engineering, energy, and mining. The closure of its hydrodynamic model is difficult owing to the complex multiscale structure of such flow. To address this problem, the energy-minimization multi-scale (EMMS) model introduces a stability condition that presents a compromise of the different dominant mechanisms involved in the systems, each expressed as an extremum tendency. However, in the physical system, each dominant mechanism should be expressed to a certain extent, and this has been formulated as a multiobjective optimization problem according to the EMMS principle generalized from the EMMS model. The mathematical properties and physical meanings of this multiobjective optimization problem have not yet been explored. This paper presents a numerical solution of this multiobjective optimization problem and discusses the correspondence between the solution characteristics and flow regimes in gas solid fluidization. This suggests that, while the most probable flow structures may correspond to the stable states predicted by the EMMS model, the noninferior solutions are in qualitative agreement with the observable flow structures under corresponding conditions. This demonstrates that both the dominant mechanisms and stability condition proposed for the EMMS model are physically reasonable and consistent, suggesting a general approach of describing complex systems with multiple dominant mechanisms. (C) 2019 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.</p
    • …
    corecore