38 research outputs found

    CBLab: Supporting the Training of Large-scale Traffic Control Policies with Scalable Traffic Simulation

    Full text link
    Traffic simulation provides interactive data for the optimization of traffic control policies. However, existing traffic simulators are limited by their lack of scalability and shortage in input data, which prevents them from generating interactive data from traffic simulation in the scenarios of real large-scale city road networks. In this paper, we present \textbf{C}ity \textbf{B}rain \textbf{Lab}, a toolkit for scalable traffic simulation. CBLab consists of three components: CBEngine, CBData, and CBScenario. CBEngine is a highly efficient simulator supporting large-scale traffic simulation. CBData includes a traffic dataset with road network data of 100 cities all around the world. We also develop a pipeline to conduct a one-click transformation from raw road networks to input data of our traffic simulation. Combining CBEngine and CBData allows researchers to run scalable traffic simulations in the road network of real large-scale cities. Based on that, CBScenario implements an interactive environment and a benchmark for two scenarios of traffic control policies respectively, with which traffic control policies adaptable for large-scale urban traffic can be trained and tuned. To the best of our knowledge, CBLab is the first infrastructure supporting traffic control policy optimization in large-scale urban scenarios. CBLab has supported the City Brain Challenge @ KDD CUP 2021. The project is available on GitHub:~\url{https://github.com/CityBrainLab/CityBrainLab.git}.Comment: Accepted by KDD2023 (Applied Data Science Track

    Derivation of Rabbit Embryonic Stem Cells from Vitrified–Thawed Embryos

    Full text link
    The rabbit is a useful animal model for regenerative medicine. We previously developed pluripotent rabbit embryonic stem cell (rbESC) lines using fresh embryos. We also successfully cryopreserved rabbit embryos by vitrification. In the present work, we combined these two technologies to derive rbESCs using vitrified?thawed (V/T) embryos. We demonstrate that V/T blastocysts (BLs) can be used to derive pluripotent rbESCs with efficiencies comparable to those using fresh BLs. These ESCs are undistinguishable from the ones derived from fresh embryos. We tested the developmental capacity of rbESCs derived from V/T embryos by BL injection experiments and produced chimeric kits. Our work adds cryopreservation to the toolbox of rabbit stem cell research and applications and will greatly expand the available research materials for regenerative medicine in a clinically relevant animal model.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140328/1/cell.2015.0044.pd

    Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    Full text link
    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2?3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98439/1/cell%2E2012%2E0001.pd

    The Cell Agglutination Agent, Phytohemagglutinin-L, Improves the Efficiency of Somatic Nuclear Transfer Cloning in Cattle (Bos taurus)

    Get PDF
    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P \u3c 0.05), and from 59 to 88% (P \u3c 0.05) with cumulus cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P \u3c 0.05). The cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer

    Follicular Oocytes Better Support Development in Rabbit Cloning Than Oviductal Oocytes

    Full text link
    This study was conducted to determine the effect of rabbit oocytes collected from ovaries or oviducts on the developmental potential of nuclear transplant embryos. Donor nuclei were obtained from adult skin fibroblasts, cumulus cells, and embryonic blastomeres. Rabbit oocytes were flushed from the oviducts (oviductal oocytes) or aspirated from the ovaries (follicular oocytes) of superovulated does at 10, 11, or 12-h post-hCG injection. The majority of collected oocytes were still attached to the sites of ovulation on the ovaries. We found that follicular oocytes had a significantly higher rate of fusion with nuclear donor cells than oviductal oocytes. There was no difference in the cleavage rate between follicular and oviductal groups, but morula and blastocyst development was significantly higher in the follicular group than in the oviductal group. Two live clones were produced in follicular group using blastomere and cumulus nuclear donors, whereas one live clone was produced in the oviductal group using a cumulus nuclear donor. These results demonstrate that cloned rabbit embryos derived from follicular oocytes have better developmental competence than those derived from oviductal oocytes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90481/1/cell-2E2011-2E0030.pd

    Oocyte Source and Hormonal Stimulation for In Vitro

    Get PDF
    The aim of this study was to investigate the efficiency of in vitro embryo production in cattle utilizing sexed sperm from two bulls and oocytes recovered by OPU. Twenty donor animals were employed in eight OPU replicates: the first four OPU trials were conducted on animals without hormone treatment, and the last four were run on the same animals, following FSH subcutaneous and intramuscular administration. A higher rate of blastocyst development was recorded in stimulated, as compared to nonstimulated animals, (25.2% versus 12.8%, P = .001). Ocytes derived from slaughterhouse (SH) ovaries were also fertilized with sperm from the same bulls. Overall, non-sexed sperm used with oocytes derived from SH ovaries was significantly more efficient for blastocyst development than was sexed sperm with these same SH derived oocytes and sexed sperm with stimulated donor oocytes (39.8% versus 25.0% and 25.2%, P = .001). In conclusion, the use of sexed sperm with OPU-derived oocytes resulted in a significantly higher blastocyst development when donors were hormonally stimulated; furthermore, the level of efficiency achieved was comparable to that attained when the same sexed sperm was tested on oocytes derived from SH ovaries

    Preparation of Carbon Encapsulated Core-Shell Fe@ CoFe2O4 Particles Through the Kirkendall Effect and Application as Advanced Anode Materials for Lithium-Ion Batteries

    No full text
    Carbon encapsulated core-shell Fe@CoFe2O4 nanoparticles (Fe@CoFe2O4@C) are produced by using Kirkendall effect method and used as the anode material for lithium-ion batteries. During the discharge process, Fe and Co particles are synthesized at the shell of the nanoparticles and are pulverized to smaller grains in the low potential regions. These pulverized particles not only increase the contact area between electrolyte and active materials, but also shortens the transfer distance of Li+ and electron, leading to an enhanced capacity. In addition, the structure stability and electrical conductivity of CoFe2O4 (CFO) shell are improved by the thin carbon layer coated on the surface of the shell. Due to this special structure, the Fe@CoFe2O4@C electrode exhibits excellent cycle performance, delivering a capacity of 1911 mA h g−1 after 500 cycles at 0.3 C (1 C = 1000 mA g−1). It also shows superior rate capacities of 760.8, 735.6, 672.2, and 596.5 mA h g−1 at the current densities of 1.0, 2.0, 5.0, and 10.0 C, respectively
    corecore