83 research outputs found

    Optimized design for micro Wankel compressor used in space-borne vapor compression heat pump

    Get PDF
    For aerospace applications, vapor compression heat pump can be used as thermal control system to collect the heat from electronic devices and transport heat to radiator by which heat can be rejected to space. Heat pumps can be used in two cases. The first consists of raising the temperature of heat energy so that the amount of radiator surface required is reduced. The second involves situations where heat cannot be directly rejected by radiators, because the heat sink temperature is higher than that of the heat source. However, the key problem is to make a small and lightweight refrigeration compressor. In order to meet the need for aerospace applications, an innovative miniature hermetic Wankel compressor was proposed and designed in this paper. We fabricated the components such as shell, cylinder, rotor, piston gear, stationary gear, rotor and stator of motor. A compressor prototype was manufactured by integrating these components. The experimental system was built to test the performances of compressor prototype. The effects of condensing temperature, compressor rotation speed and refrigerant charge on the compressor performance were obtained. The influences of tilt angle on the performances of compressor were also investigated. The results indicated that the prototype have good performance, reliability and micro-gravity adaptability

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Outline Design of an Atmospheric Corrosion Data Monitoring System

    No full text
    Atmospheric corrosion monitoring and evaluation are important means for studying the mechanism and behavior of atmospheric corrosion of metals. In view of the long cycle, cumbersome process, and poor data quality of the traditional outdoor hanging method, an innovative atmospheric corrosion data monitoring system has been designed to detect atmospheric environment data and metal corrosion data on site, and display the detection data of the equipment’s service location to users in real-time in the form of a “dynamic corrosion map”. This can provide a differentiated design for the anti-corrosion of important equipment such as power grid transmission and transformation engineering components Provide effective data support for engineering life prediction and operation and maintenance. At present, the system has been piloted and promoted in some network provinces, achieving good social and economic benefits
    • …
    corecore