34 research outputs found

    Fundamental and semi-global kinetic mechanisms of hydrocarbon combustion. Annual report, October 1, 1977--September 30, 1978

    No full text
    Aimed at understanding practical combustion environments, present modeling efforts have been hampered by difficulties related to coupling combustion chemistry to the complex fluid mechanics present. In an attempt to circumvent such difficulties the present research program is aimed at the development of simplified chemical kinetic models (usually termed global models) to represent the combustion chemistry. Initially aimed at simple hydrocarbon fuels the program is progressing to studies of more complex aliphatics as well as important alternative fuels. The objective of this research is multifold: (a) to determine mechanistic oxidation routes of hydrocarbons derived from crudes and alternate sources, so that efficient and environmentally clean power plants based on internal and external combustion processes can be designed; (b) to develop and validate actual simplified (global) reaction rates for these hydrocarbons so that these power plants can be modelled; and (c) to develop an understanding of particulate (soot) formation to permit the rapid and successful introduction of the inexpensive, heavy, highly aromatic fuels. Studies of paraffin, olefin and alcohol hydrocarbons are reviewed. Appropriate global models are presented and compared with experimental data. The results clearly demonstrate that the turbulent flow reactor facility can be used to develop accurate global models for a variety of important fuels

    A wide-ranging kinetic modeling study of methyl butanoate combustion

    No full text
    International audienceA detailed chemical kinetic model has been used to study methyl butanoate (a model compound for biodiesel fuels) oxidation over a wide range of conditions. New experimental results obtained in a jet stirred reactor (JSR) at 0.101 MPa, Φ = 1.13 and 800 < T (K) < 1350 were obtained and used to test and modify an earlier model. In addition, new experimental data generated in an opposed-flow diffusion flame at 0.101 MPa and in the Princeton variable pressure flow reactor (VPFR) at 1.266 MPa, 0.35 < Φ < 1.5 and 500 < T (K) < 900 are presented and compared against the revised model. The numerical model consists of 295 chemical species and 1498 chemical reactions and gives a good description of the data. Experimentally, the oxidation of methyl butanoate shows very little low temperature and negative temperature coefficient behaviour, with hot ignition occurring at about 800 K. Modeling results show similar diminished low temperature oxidation character, but reasonably reproduce hot ignition behaviour found in the VPFR. At higher temperature conditions, the model well describes the intermediate species found in the jet stirred reactor and in opposed flow diffusion flame experiments
    corecore