17 research outputs found

    Cost-effectiveness of external cephalic version for term breech presentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>External cephalic version (ECV) is recommended by the American College of Obstetricians and Gynecologists to convert a breech fetus to vertex position and reduce the need for cesarean delivery. The goal of this study was to determine the incremental cost-effectiveness ratio, from society's perspective, of ECV compared to scheduled cesarean for term breech presentation.</p> <p>Methods</p> <p>A computer-based decision model (TreeAge Pro 2008, Tree Age Software, Inc.) was developed for a hypothetical base case parturient presenting with a term singleton breech fetus with no contraindications for vaginal delivery. The model incorporated actual hospital costs (e.g., 8,023forcesareanand8,023 for cesarean and 5,581 for vaginal delivery), utilities to quantify health-related quality of life, and probabilities based on analysis of published literature of successful ECV trial, spontaneous reversion, mode of delivery, and need for unanticipated emergency cesarean delivery. The primary endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted year of life gained. A threshold of 50,000perquality−adjustedlife−years(QALY)wasusedtodeterminecost−effectiveness.</p><p>Results</p><p>Theincrementalcost−effectivenessofECV,assumingabaseline5850,000 per quality-adjusted life-years (QALY) was used to determine cost-effectiveness.</p> <p>Results</p> <p>The incremental cost-effectiveness of ECV, assuming a baseline 58% success rate, equaled 7,900/QALY. If the estimated probability of successful ECV is less than 32%, then ECV costs more to society and has poorer QALYs for the patient. However, as the probability of successful ECV was between 32% and 63%, ECV cost more than cesarean delivery but with greater associated QALY such that the cost-effectiveness ratio was less than $50,000/QALY. If the probability of successful ECV was greater than 63%, the computer modeling indicated that a trial of ECV is less costly and with better QALYs than a scheduled cesarean. The cost-effectiveness of a trial of ECV is most sensitive to its probability of success, and not to the probabilities of a cesarean after ECV, spontaneous reversion to breech, successful second ECV trial, or adverse outcome from emergency cesarean.</p> <p>Conclusions</p> <p>From society's perspective, ECV trial is cost-effective when compared to a scheduled cesarean for breech presentation provided the probability of successful ECV is > 32%. Improved algorithms are needed to more precisely estimate the likelihood that a patient will have a successful ECV.</p

    Mechanism of estradiol-induced block of voltage-gated K+ currents in rat medial preoptic neurons.

    Get PDF
    The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K(+) channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K(+) channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-Estradiol rapidly (within seconds) and reversibly reduced the K(+) currents, showing an EC(50) value of 9.7 µM. The effect was slightly voltage dependent, but independent of external Ca(2+), and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K(+) currents, membrane-impermeant forms of estradiol did not reduce the K(+) currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the K(V)-2-channel blocker r-stromatoxin-1. The time course of K(+) current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K(+), suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K(+) channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K(+) currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels
    corecore