7,250 research outputs found

    Analyzing differences in the costs of treatment across centers within economic evaluations

    Get PDF
    Objectives: Assessments of health technologies increasingly include economic evaluations conducted alongside clinical trials. One particular concern with economic evaluations conducted alongside clinical trials is the generalizability of results from one setting to another. Much of the focus relating to this topic has been on the generalizability of results between countries, However, the characteristics of clinical trial design require further consideration of the generalizability of cost data between centers within a single country, which could be important in decisions about adoption of the new technology. Methods: We used data from a multicenter clinical trial conducted in the United Kingdom to assess the degree of variation in costs between patients and between treatment centers and the determinants of the degree of such variation. Results: The variation between patients was statistically significant for both the experimental and conventional treatments. However, the degree of variation between centers was only statistically significant for the experimental treatment. Such variation appeared to be a result of hospital practice, such as pay ment mechanisms for staff and provision of hostel accommodation, rather than variations in physical resource use or substantive differences in cost structure. Conclusions: Multicenter economic evaluations are necessary for determining the variations in hospital practice and characteristics that can in turn determine the generalizability of study results to other settings. Such analyses can identify issues that may be important in adopting a new health technology. Analysis is required of similar large multicenter trials to confirm these conclusions

    Kappa-symmetric deformations of M5-brane dynamics

    Full text link
    We calculate the first supersymmetric and kappa-symmetric derivative deformation of the M5-brane worldvolume theory in a flat eleven-dimensional background. By applying cohomological techniques we obtain a deformation of the standard constraint of the superembedding formalism. The first possible deformation of the constraint and hence the equations of motion arises at cubic order in fields and fourth order in a fundamental length scale ll. The deformation is unique up to this order. In particular this rules out any induced Einstein-Hilbert terms on the worldvolume. We explicitly calculate corrections to the equations of motion for the tensor gauge supermultiplet.Comment: 17 pages. Additional comments in section

    The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM

    Get PDF
    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral Φ~6\tilde\Phi_6 with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar mathcalN=4\\mathcal{N}=4 super-Yang-Mills theory, Ω(1)\Omega^{(1)} and Ω(2)\Omega^{(2)}. The derivative of Ω(2)\Omega^{(2)} with respect to one of the conformal invariants yields Φ~6\tilde\Phi_6, while another first-order differential operator applied to Φ~6\tilde\Phi_6 yields Ω(1)\Omega^{(1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in mathcalN=4\\mathcal{N}=4 super-Yang-Mills.Comment: 18 pages, 2 figure

    Theory of Microwave Parametric Down Conversion and Squeezing Using Circuit QED

    Full text link
    We study theoretically the parametric down conversion and squeezing of microwaves using cavity quantum electrodynamics of a superconducting Cooper pair box (CPB) qubit located inside a transmission line resonator. The non-linear susceptibility \chi_2 describing three-wave mixing can be tuned by dc gate voltage applied to the CPB and vanishes by symmetry at the charge degeneracy point. We show that the coherent coupling of different cavity modes through the qubit can generate a squeezed state. Based on parameters realized in recent successful circuit QED experiments, squeezing of 95% ~ 13dB below the vacuum noise level should be readily achievable.Comment: 4 pages, accepted for publication in Phys. Rev. Let

    Relating Superembeddings and Non-linear Realisations

    Get PDF
    We discuss the relation between the superembedding method for deriving worldvolume actions for D-branes and the method of Partially Broken Global Supersymmetry based upon linear and non-linear realisations of SUSY. We give the explicit relation for the cases of space filling branes in 3 and 4 dimensions and show that the standard F-constraint of the superembedding method is the source of the required covariant non-linear constraints for the PBGS method.Comment: 19 pages. Improved spelling, references adde

    First-principles quantum dynamics in interacting Bose gases I: The positive P representation

    Full text link
    The performance of the positive P phase-space representation for exact many-body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made to other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.Comment: 21 pages, 7 figures, 2 tables, IOP styl

    Short-term and long-term effects of United Nations peace operations

    Get PDF
    Earlier studies have shown that United Nations peace operations make a positive contribution to peacebuilding efforts after civil wars. But do these effects carry over to the period after the peacekeepers leave? And how do the effects of UN peace operations interact with other determinants of peacebuilding in the long run? The author addresses these questions using a revised version of the Doyle and Sambanis dataset and applying different estimation methods to estimate the short-term and long-term effects of UN peace missions. He finds that UN missions have robust, positive effects on peacebuilding in the short term. UN missions can help parties implement peace agreements but the UN cannot fight wars, and UN operations contribute more to the quality of the peace where peace is based on participation, than to the longevity of the peace, where peace is simply the absence of war. The effects of UN missions are also felt in the long run, but they dissipate over time. What is missing in UN peacebuilding is a strategy to foster the self-sustaining economic growth that could connect increased participation with sustainable peace.Post Conflict Reintegration,Peace&Peacekeeping,International Affairs,Post Conflict Reconstruction,Politics and Government

    Kappa-symmetric Derivative Corrections to D-brane Dynamics

    Full text link
    We show how the superembedding formalism can be applied to construct manifestly kappa-symmetric higher derivative corrections for the D9-brane. We also show that all correction terms appear at even powers of the fundamental length scale ll. We explicitly construct the first potential correction, which corresponds to the kappa-symmetric version of the 4F4\partial^4 F^4, which one finds from the four-point amplitude of the open superstring.Comment: 20 pages. Minor changes, added reference

    Generating Entangled Microwave Radiation Over Two Transmission Lines

    Full text link
    Using a superconducting circuit, the Josephson mixer, we demonstrate the first experimental realization of spatially separated two-mode squeezed states of microwave light. Driven by a pump tone, a first Josephson mixer generates, out of quantum vacuum, a pair of entangled fields at different frequencies on separate transmission lines. A second mixer, driven by a π\pi-phase shifted copy of the first pump tone, recombines and disentangles the two fields. The resulting output noise level is measured to be lower than for vacuum state at the input of the second mixer, an unambiguous proof of entanglement. Moreover, the output noise level provides a direct, quantitative measure of entanglement, leading here to the demonstration of 6 Mebit.s1^{-1} (Mega entangled bits per second) generated by the first mixer.Comment: 5 pages, 4 figures. Supplementary Information can be found here as an ancillary fil

    Gaussian phase-space representations for fermions

    Get PDF
    We introduce a positive phase-space representation for fermions, using the most general possible multi-mode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behaviour in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.Comment: More references and examples. Much less mathematical materia
    corecore