20 research outputs found

    Dual superconformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory

    Full text link
    We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes as functions in the appropriate dual superspace. Rewritten in this form, all tree-level MHV and next-to-MHV amplitudes exhibit manifest dual superconformal symmetry. We propose a new, compact and Lorentz covariant formula for the tree-level NMHV amplitudes for arbitrary numbers and types of external particles. The dual conformal symmetry is broken at loop level by infrared divergences. However, we provide evidence that the anomalous contribution to the MHV and NMHV superamplitudes is the same and, therefore, their ratio is a dual conformal invariant function. We identify this function by an explicit calculation of the six-particle amplitudes at one loop. We conjecture that these properties hold for all, MHV and non-MHV, superamplitudes in N=4 SYM both at weak and at strong coupling.Comment: 58 page

    Generalized unitarity for N=4 super-amplitudes

    Full text link
    We develop a manifestly supersymmetric version of the generalized unitarity cut method for calculating scattering amplitudes in N=4 SYM theory. We illustrate the power of this method by computing the one-loop n-point NMHV super-amplitudes. The result confirms two conjectures which we made in arXiv:0807.1095 [hep-th]. Firstly, we derive the compact, manifestly dual superconformally covariant form of the NMHV tree amplitudes for arbitrary number and types of external particles. Secondly, we show that the ratio of the one-loop NMHV to the MHV amplitude is dual conformal invariant.Comment: 41 pages, 9 figure

    Hidden Simplicity of Gauge Theory Amplitudes

    Full text link
    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the BCFW recursion relations we solve for the tree-level S-matrix in N=4 super Yang-Mills theory, and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree-level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.Comment: 46 pages, 15 figures. v2 ref added, typos fixe

    One-loop derivation of the Wilson polygon - MHV amplitude duality

    Full text link
    We discuss the origin of the Wilson polygon - MHV amplitude duality at the perturbative level. It is shown that the duality for the MHV amplitudes at one-loop level can be proven upon the peculiar change of variables in Feynman parametrization and the use of the relation between Feynman integrals at the different space-time dimensions. Some generalization of the duality which implies the insertion of the particular vertex operator at the Wilson triangle is found for the 3-point function. We discuss analytical structure of Wilson loop diagrams and present the corresponding Landau equations. The geometrical interpretation of the loop diagram in terms of the hyperbolic geometry is discussed.Comment: 29 page

    Generic multiloop methods and application to N=4 super-Yang-Mills

    Full text link
    We review some recent additions to the tool-chest of techniques for finding compact integrand representations of multiloop gauge-theory amplitudes - including non-planar contributions - applicable for N=4 super-Yang-Mills in four and higher dimensions, as well as for theories with less supersymmetry. We discuss a general organization of amplitudes in terms of purely cubic graphs, review the method of maximal cuts, as well as some special D-dimensional recursive cuts, and conclude by describing the efficient organization of amplitudes resulting from the conjectured duality between color and kinematic structures on constituent graphs.Comment: 42 pages, 18 figures, invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", v2 minor corrections, v3 added reference

    Basics of Generalized Unitarity

    Full text link
    We review generalized unitarity as a means for obtaining loop amplitudes from on-shell tree amplitudes. The method is generally applicable to both supersymmetric and non-supersymmetric amplitudes, including non-planar contributions. Here we focus mainly on N=4 Yang-Mills theory, in the context of on-shell superspaces. Given the need for regularization at loop level, we also review a six-dimensional helicity-based superspace formalism and its application to dimensional and massive regularizations. An important feature of the unitarity method is that it offers a means for carrying over any identified tree-level property of on-shell amplitudes to loop level, though sometimes in a modified form. We illustrate this with examples of dual conformal symmetry and a recently discovered duality between color and kinematics.Comment: 37 pages, 10 figures. Invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", R. Roiban(ed), M. Spradlin(ed), A. Volovich(ed

    Algebra of Lax Connection for T-Dual Models

    Full text link
    We study relation between T-duality and integrability. We develop the Hamiltonian formalism for principal chiral model on general group manifold and on its T-dual image. We calculate the Poisson bracket of Lax connections in T-dual model and we show that they are non-local as opposite to the Poisson brackets of Lax connection in original model. We demonstrate these calculations on two specific examples: Sigma model on S(2) and sigma model on AdS(2).Comment: 24 pages, references adde

    D=3 N=6 superconformal symmetry of AdS_4 x CP^3 superstring

    Full text link
    Invariance of the AdS_4 x CP^3 superstring under D=3 N=6 superconformal symmetry is discussed in the sector described by the OSp(4|6)/(SO(1,3) x U(3)) supercoset sigma-model action presented in the conformal basis for the osp(4|6)/(so(1,3) x u(3)) Cartan forms. Transformation rules under D=3 N=6 superconformal symmetry for the (10|24)-dimensional 'reduced' AdS_4 x CP^3 superspace coordinates are obtained and used to derive corresponding world-sheet currents.Comment: LaTeX, 23 pages; v2: presentation refined, typos corrected, references adde

    Integrable spin chains and scattering amplitudes

    Full text link
    In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large Nc and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(Nc). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach.Comment: Invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", R. Roiban(ed), M. Spradlin(ed), A. Volovich (ed

    Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes

    No full text
    28 pages, 5 figuresPlanar gluon amplitudes in N=4 SYM are remarkably similar to expectation values of Wilson loops made of light-like segments. We argue that the latter can be determined by making use of the conformal symmetry of the gauge theory, broken by cusp anomalies. We derive the corresponding anomalous conformal Ward identities valid to all loops and show that they uniquely fix the form of the finite part of a Wilson loop with n cusps (up to an additive constant) for n=4 and n=5 and reduce the freedom in it to a function of conformal invariants for n>=6. We also present an explicit two-loop calculation for n=5. The result confirms the form predicted by the Ward identities and exactly matches the finite part of the two-loop five-gluon planar MHV amplitude. This constitutes another non-trivial test of the Wilson loop/gluon amplitude duality
    corecore