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The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude

J.M. Drummond a, J. Henn a, G.P. Korchemsky b, E. Sokatchev a,∗

a Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTH, 1 B.P. 110, F-74941 Annecy-le-Vieux, France
b Laboratoire de Physique Théorique, 2 Université de Paris XI, F-91405 Orsay cedex, France

Received 10 February 2008; accepted 8 March 2008

Available online 20 March 2008

Editor: L. Alvarez-Gaumé

Abstract

As a test of the gluon scattering amplitude/Wilson loop duality, we evaluate the hexagonal light-like Wilson loop at two loops in N = 4 super-
Yang–Mills theory. We compare its finite part to the Bern–Dixon–Smirnov (BDS) conjecture for the finite part of the six-gluon amplitude. We
find that the two expressions have the same behavior in the collinear limit, but they differ by a non-trivial function of the three (dual) conformally
invariant variables. This implies that either the BDS conjecture or the gluon amplitude/Wilson loop duality fails for the six-gluon amplitude,
starting from two loops. Our results are in qualitative agreement with the analysis of Alday and Maldacena of scattering amplitudes with infinitely
many external gluons.
© 2008 Elsevier B.V. Open access under CC BY license.
1. Planar gluon amplitude/Wilson loop duality

With recent advances of the AdS/CFT correspondence, it
became possible to study gluon scattering amplitudes in maxi-
mally supersymmetric Yang–Mills theory (SYM) both at weak
and strong coupling.

At weak coupling, the conjecture was put forward by Bern
et al. [1] that the maximally helicity-violating (MHV) ampli-
tudes in N = 4 SYM have a remarkable all-loop iterative struc-
ture. The color-ordered planar n-gluon amplitude, divided by
the tree amplitude, takes the following form,

(1)lnMn = [IR divergences] + F (MHV)
n (p1, . . . , pn) + O(ε).

Here the first term on the right-hand side describes infrared di-
vergences in the dimensional regularization scheme with D =
4 − 2ε, while the second term is the finite contribution (de-
pendent on the gluon momenta and the ’t Hooft coupling a =
g2N/(8π2)). The BDS conjecture provides an explicit expres-
sion for the finite part, F

(MHV)
n = F

(BDS)
n , for an arbitrary num-

ber n of external gluons, to all orders in the ’t Hooft coupling.
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At present, the BDS conjecture has been confirmed up to three
loops for F4 [1] and up to two loops for F5 [2]. An explicit ver-
ification of the conjecture for n = 6 at two loops has not been
performed up to now. However, we can at least say that were
the BDS conjecture (1) to fail, it would have to be corrected by
terms that satisfy an important additional consistency require-
ment. It originates from the known two-loop asymptotic behav-
ior of the scattering amplitude in the collinear limit when the
momenta of two neighboring on-shell gluons become collinear.
In this limit, Mn factorizes into the product of the (n−1)-gluon
amplitude and the universal splitting amplitude [3,4]. Since the
BDS conjecture does have this property [1], any potential cor-
rection to F

(BDS)
n must vanish in this limit.

Recently, Alday and Maldacena proposed the strong cou-
pling description of n-gluon scattering amplitudes [5] using
the AdS/CFT correspondence. According to their proposal,
lnMn is given by the minimal surface in AdS5 attached to
a contour Cn, made of n light-like segments [xi, xi+1], with
the coordinates xi related to the on-shell gluon momenta,
x

μ
i − x

μ
i+1 = p

μ
i ,

(2)lnMn = −
√

a

2π
Amin(Cn).

Remarkably, for n = 4 the corresponding minimal surface can
be found explicitly and, after regularization, it leads to the same
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expression for lnM4 as Eq. (1) with the finite part F4 in agree-
ment with the BDS ansatz. For n � 5 the practical evaluation
of the solution of the classical string equations turns out to be
difficult, but it simplifies significantly for n very large [6]. In
the limit n → ∞ the strong coupling prediction for lnMn dis-
agrees with the BDS conjecture [6].

Alday and Maldacena pointed out [5] that their prescrip-
tion (2) is mathematically equivalent to the calculation of a
Wilson loop at strong coupling [7,8]. Inspired by this, in [9]
three of us conjectured that a duality relation between planar
gluon amplitudes and light-like Wilson loops also exists at weak
coupling. We illustrated this relation by an explicit one-loop
calculation for n = 4. This was later extended to the case of
arbitrary n at one loop in [10]. The duality relation reads

(3)lnMn = lnW(Cn) + O(ε),

with Cn the same contour as before. We have recently verified
this duality at two loops for n = 4 and n = 5 and derived a
conformal Ward identity for the light-like Wilson loop W(Cn),
valid to all orders in the coupling [11,12]. This Ward identity
fixes the form of the finite part of the Wilson loop for n = 4 and
n = 5, up to an additive constant, to agree with the conjectured
BDS form for the corresponding gluon amplitudes. However,
for n � 6 it allows for an arbitrary function of the conformal in-
variants in addition to the BDS form (for n = 6 there are three
such invariants). It is the purpose of the present Letter to deter-
mine this function for n = 6 at two loops.

The basic object we consider is the Wilson loop in N = 4
SYM,

(4)W(Cn) = 1

N
〈0|TrP exp

(
i

∮
Cn

dxμ Aμ(x)

)
|0〉,

where Aμ(x) = Aa
μ(x)ta is a gauge field and ta are the genera-

tors of the gauge group SU(N) in the fundamental representa-
tion. We use the conventions of [11,12] and refer the interested
reader to these papers for details. Even though N = 4 SYM is
a finite gauge theory, the Wilson loop (4) has specific ultravio-
let divergences due to the presence of cusps on the integration
contour Cn [13–15]. To regularize these singularities we use di-
mensional regularization with D = 4 − 2ε. Like the scattering
amplitude, the Wilson loop can be factorized into divergent and
finite parts,

(5)lnW(Cn) = Zn + F (WL)
n .

Due to exponentiation of the cusp singularities to all loops, the
divergent part Zn has the special form [16]

(6)Zn = −1

4

∑
l�1

al
n∑

i=1

(−x2
i−1,i+1μ

2)lε
[
Γ

(l)
cusp

(lε)2
+ Γ (l)

lε

]
,

where Γ
(l)

cusp and Γ (l) are the expansion coefficients of the cusp
anomalous dimension and the so-called collinear anomalous
dimension, respectively, defined in the adjoint representation
of SU(N):

Γcusp(a) =
∑

alΓ (l)
cusp = 2a − π2

3
a2 + O

(
a3),
l�1
(7)Γ (a) =
∑
l�1

alΓ (l) = −7ζ3a
2 + O

(
a3).

In [11,12] we confirmed these relations by an explicit two-loop
calculation of the divergent part of W4 and W5.

The duality relation (3) implies that upon a specific iden-
tification of the regularization parameters, the infrared diver-
gences of the scattering amplitude Mn match the ultraviolet
divergences of the light-like Wilson loop W(Cn) and, most im-
portantly, the finite parts of the two objects also coincide up to
an inessential additive constant,

(8)F (MHV)
n = F (WL)

n + const.

While the former property immediately follows from the known
structure of divergences of scattering amplitudes/Wilson loops
in a generic gauge theory [15], the latter property (8) is ex-
tremely non-trivial.

In this Letter we report on the two-loop calculation of F
(WL)
6 .

We find that F
(WL)
6 �= F

(BDS)
6 , with their difference being a non-

trivial conformally invariant function of the gluon momenta. At
the same time, F

(WL)
6 has the same collinear limit behavior as

the six-gluon amplitude F
(MHV)
6 .

2. Finite part of the hexagon Wilson loop

The finite part of the hexagon Wilson loop, F
(WL)
6 , does not

depend on the renormalization scale and it is a dimensionless
function of the distances x2

ij . Since the edges of C6 are light-

like, x2
i,i+1 = 0, the only nonzero distances are x2

i,i+2 and x2
i,i+3

(with i = 1, . . . ,6 and the periodicity condition xi+6 = xi ). We
argued in [11,12] that the conformal symmetry of the Wilson
loop in N = 4 SYM imposes severe constraints on F

(WL)
n . It

has to satisfy the following Ward identity,

(9)

n∑
i=1

(
2xν

i xi · ∂i − x2
i ∂ν

i

)
Fn = 1

2
Γcusp(a)

n∑
i=1

ln
x2
i,i+2

x2
i−1,i+1

xν
i,i+1.

Specified to n = 6, its general solution is given by [11]

(10)F
(WL)
6 = F

(BDS)
6 + f (u1, u2, u3).

Here, upon the identification pi = xi − xi+1,

F
(BDS)
6 = 1

4
Γcusp(a)

6∑
i=1

[
− ln

(
x2
i,i+2

x2
i,i+3

)
ln

(
x2
i+1,i+3

x2
i,i+3

)

(11)

+ 1

4
ln2

(
x2
i,i+3

x2
i+1,i+4

)
− 1

2
Li2

(
1 − x2

i,i+2x
2
i+3,i+5

x2
i,i+3x

2
i+2,i+5

)]
,

while f (u1, u2, u3) is an arbitrary function of the three cross-
ratios3

(12)u1 = x2
13x

2
46

x2
14x

2
36

, u2 = x2
24x

2
15

x2
25x

2
14

, u3 = x2
35x

2
26

x2
36x

2
25

.

3 The last term in (11) is a function of cross-ratios only, but we keep it in

F
(BDS), because it is part of the BDS conjecture.
6
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Fig. 1. The maximally non-Abelian Feynman diagrams of different topology contributing to F
(WL)
6 . The double lines depict the integration contour C6, the dashed

lines—the gluon propagator and the blob—the one-loop polarization operator.
These variables are invariant under conformal transformations
of the coordinates x

μ
i and, therefore, they are annihilated by

the conformal boost operator entering the left-hand side of (9).
In addition, the Wilson loop W(C6) is invariant under cyclic
(xi → xi+1) and mirror (xi → x6−i ) permutations of the cusp
points [12]. This implies that f (u1, u2, u3) is a totally symmet-
ric function of three variables.

Combining together (8) and (10), we conclude that were the
BDS conjecture and the duality relation (8) correct for n = 6,
we would expect that f (u1, u2, u3) = const. The explicit two-
loop calculation we report on here shows that this is not true.

For the sake of simplicity we performed the calculation of
W(C6) in the Feynman gauge, in the DRED scheme. In addi-
tion, we made use of the non-Abelian exponentiation property
of Wilson loops [17] to reduce the number of relevant Feynman
diagrams. In application to f (u1, u2, u3) this property can be
formulated as follows (the same property also holds for F

(WL)
6 )

(13)f = g2

4π2
CF f (1) +

(
g2

4π2

)2

CF Nf (2) + O
(
g6),

where CF = tata = (N2 − 1)/(2N) is the Casimir in the
fundamental representation of the SU(N). The functions f (1)

and f (2) do not involve the color factors and only depend on
the distances between the cusp points on C6. At one loop,
f (1)(u1, u2, u3) is in fact a constant [10].

As explained in [11], the relation (13) implies that in order
to determine the function F

(WL)
6 at two loops (and hence f (2))

it is sufficient to calculate the contribution to W(C6) from two-
loop diagrams containing the ‘maximally non-Abelian’ color
factor CF N only. All relevant two-loop graphs are shown in
Fig. 1. We derived parameter integral representations for all the
Feynman graphs. The integrals are difficult to evaluate analyti-
cally and so we calculated them numerically for many different
sets of values of x2
ij .4 We found that, firstly, for values of x2

ij

related by conformal boosts (hence leaving u1, u2, u3 invari-
ant), the difference F

(WL)
6 − F

(BDS)
6 remains constant. Thus, it

only depends on the cross-ratios (12), in agreement with (10).
Secondly, varying the values of the cross-ratios we found that
f (2)(u1, u2, u3) �= const (see Figs. 2 and 3), i.e., it is a non-
trivial function of u1, u2, u3.

This means that either the BDS conjecture, or the gluon am-
plitude/Wilson loop duality (or both) is not correct for n = 6,
starting from two loops. At this stage, we cannot discriminate
between the different scenarios. Nevertheless, we can show that
F

(WL)
6 has the same collinear limit behavior as F

(BDS)
6 at two

loops, i.e., f (2)(u1, u2, u3) tends to a constant in the collinear
limit.

We recall that for the six-gluon amplitude M6 depend-
ing on light-like momenta,

∑6
i=1 p

μ
i = 0 and p2

i = 0, the
collinear limit amounts to letting, e.g., p

μ
5 and p

μ
6 be nearly

collinear (see, e.g., [3] for more details), so that (p5 +p6)
2 → 0

and

(14)p
μ
5 → zP μ, p

μ
6 → (1 − z)P μ,

with P 2 = 0 and 0 < z < 1 being the momentum frac-
tion. Using the identification p

μ
i = x

μ
i − x

μ
i+1, we translate

these relations into properties of the corresponding Wilson
loop W(C6). We find that the cusp at point 6 is ‘flattened’
in the collinear limit and the contour C6 reduces to one with
five cusps. In terms of the distances x2

ij , the collinear limit

4 One should bear in mind that the allowed values of x2
ij

have to obey kine-

matical constraints. They originate from the six gluon momenta p
μ
i

satisfying

p2
i

= 0 and
∑6

i=1 p
μ
i

= 0. Solving these constraints is not a trivial task. We are
grateful to Fernando Alday for sharing with us his numerical solutions for the
kinematical configurations.
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Fig. 2. The γ -dependence of the function f̂ (2)(γ,u,1−u), Eq. (18), for differ-
ent values of the parameter u = 0.5 (lower curve), u = 0.3 (middle curve) and
u = 0.1 (upper curve).

amounts to

x2
15 → 0, x2

36 → zx2
13 + (1 − z)x2

35,

(15)x2
46 → x2

14, x2
26 → (1 − z)x2

25,

while the other distances x2
13, x

2
24, x

2
25, x

2
35 remain unchanged.

For the conformal cross-ratios the relation (15) implies

(16)u1 → u, u2 → 0, u3 → 1 − u,

with u = zx2
13/(zx

2
13 + (1 − z)x2

35) fixed. As was already men-
tioned, the relation (10) is consistent with the collinear limit
of the six-gluon amplitude provided that, in the limit (16), the
function f (u1, u2, u3) approaches a finite value independent of
the kinematical invariants. The same property can be expressed
as follows (we recall that the function f (u1, u2, u3) is totally
symmetric)

(17)f (0, u,1 − u) = c,

with c being a constant. Using our two-loop results for the
finite part F6, we performed thorough numerical tests of the
relation (17) for different kinematical configurations of the con-
tour C6.

We found that, in agreement with (17), the limiting value of
the function f (2)(γ, u,1 − u) as γ → 0 does not depend on u.
Since the duality relation (8) is not sensitive to the value of this
constant, it is convenient to subtract it from f (2)(γ, u,1 − u)

and introduce the function

(18)f̂ (2)(γ, u,1 − u) = c − f (2)(γ, u,1 − u),

which satisfies f̂ (2)(0, u,1 − u) = 0. To summarize our find-
ings, in Fig. 2 we plot the function f̂ (2)(γ, u,1 − u) against
γ for different choices of the parameter 0 < u < 1 and in
Fig. 3 the same function against u for different choices of the
parameter γ . The important region for the collinear limit is
where γ is close to zero. We also give numerical values for
a range of values of γ such that one can see how the function
f (2)(u1, u2, u3) varies in the particular parametrization u1 = γ ,
u2 = u, u3 = 1 − u.
Fig. 3. The u-dependence of the function f̂ (2)(γ,u,1 −u), Eq. (18), for differ-
ent values of the parameter γ = 0.001 (lower curve), γ = 0.01 (middle curve)
and γ = 0.1 (upper curve).

3. Conclusions

Given the results we have presented in this Letter, it is urgent
to know the six-gluon amplitude at two loops. Depending on
the outcome of this calculation, we can envisage the following
three scenarios:

• If the duality between amplitudes and Wilson loops per-
sists for the six-gluon amplitude at two loops, then the BDS
conjecture fails and the difference will be given by the function
f (2)(u1, u2, u3) that we have found.

• If the BDS conjecture holds, then the duality between am-
plitudes and Wilson loops breaks down for n = 6 at two loops.

• If the gluon amplitude disagrees with both the BDS ansatz
and the Wilson loop, then it would be very interesting to verify
whether it still respects dual conformal symmetry [11,12,18]
(i.e., the difference is a function of the conformal cross-ratios).

The finite part of the one-loop MHV amplitude involves
functions of the kinematical invariants of transcendentality 2
(double logs and dilogs). We expect that this is a general fea-
ture, i.e., the finite part of lnMn should have maximal tran-
scendentality 2	 at 	 loops. This is indeed true for the BDS
ansatz (11), where the non-trivial functions are of transcen-
dentality 2 and the factor Γcusp(a) is supposed to supply the
remaining transcendentality 2(	 − 1). There are a priori no
reasons why functions of higher transcendentality should not
appear at higher loops, provided that they have the general
analyticity properties of gluon amplitudes, including the cor-
rect collinear limit behavior. An example for this is the con-
stant term in the finite part of lnW(Cn), as we have demon-
strated by explicit two loop calculations for n = 4 and n = 5.
We conjecture that the same property holds for arbitrary n to
all orders. In particular, we expect that our two-loop function
F

(WL)
6 −F

(BDS)
6 = f (u1, u2, u3) has transcendentality 4. Need-

less to say, it would be very interesting to identify its analytical
form.

Independently of the outcome of the two-loop calculation
of the six-gluon amplitude, we have presented an example of
a non-trivial function which is not captured by the BDS ansatz
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and which has the right collinear limit properties to appear in
the final two-loop expression for the six-gluon amplitude.
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