7,313 research outputs found
Analyzing differences in the costs of treatment across centers within economic evaluations
Objectives: Assessments of health technologies increasingly include economic evaluations conducted alongside clinical trials. One particular concern with economic evaluations conducted alongside clinical trials is the generalizability of results from one setting to another. Much of the focus relating to this topic has been on the generalizability of results between countries, However, the characteristics of clinical trial design require further consideration of the generalizability of cost data between centers within a single country, which could be important in decisions about adoption of the new technology. Methods: We used data from a multicenter clinical trial conducted in the United Kingdom to assess the degree of variation in costs between patients and between treatment centers and the determinants of the degree of such variation. Results: The variation between patients was statistically significant for both the experimental and conventional treatments. However, the degree of variation between centers was only statistically significant for the experimental treatment. Such variation appeared to be a result of hospital practice, such as pay ment mechanisms for staff and provision of hostel accommodation, rather than variations in physical resource use or substantive differences in cost structure. Conclusions: Multicenter economic evaluations are necessary for determining the variations in hospital practice and characteristics that can in turn determine the generalizability of study results to other settings. Such analyses can identify issues that may be important in adopting a new health technology. Analysis is required of similar large multicenter trials to confirm these conclusions
Kappa-symmetric deformations of M5-brane dynamics
We calculate the first supersymmetric and kappa-symmetric derivative
deformation of the M5-brane worldvolume theory in a flat eleven-dimensional
background. By applying cohomological techniques we obtain a deformation of the
standard constraint of the superembedding formalism. The first possible
deformation of the constraint and hence the equations of motion arises at cubic
order in fields and fourth order in a fundamental length scale . The
deformation is unique up to this order. In particular this rules out any
induced Einstein-Hilbert terms on the worldvolume. We explicitly calculate
corrections to the equations of motion for the tensor gauge supermultiplet.Comment: 17 pages. Additional comments in section
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
We provide an analytic formula for the (rescaled) one-loop scalar hexagon
integral with all external legs massless, in terms of classical
polylogarithms. We show that this integral is closely connected to two
integrals appearing in one- and two-loop amplitudes in planar
super-Yang-Mills theory, and . The derivative of
with respect to one of the conformal invariants yields
, while another first-order differential operator applied to
yields . We also introduce some kinematic
variables that rationalize the arguments of the polylogarithms, making it easy
to verify the latter differential equation. We also give a further example of a
six-dimensional integral relevant for amplitudes in
super-Yang-Mills.Comment: 18 pages, 2 figure
Theory of Microwave Parametric Down Conversion and Squeezing Using Circuit QED
We study theoretically the parametric down conversion and squeezing of
microwaves using cavity quantum electrodynamics of a superconducting Cooper
pair box (CPB) qubit located inside a transmission line resonator. The
non-linear susceptibility \chi_2 describing three-wave mixing can be tuned by
dc gate voltage applied to the CPB and vanishes by symmetry at the charge
degeneracy point. We show that the coherent coupling of different cavity modes
through the qubit can generate a squeezed state. Based on parameters realized
in recent successful circuit QED experiments, squeezing of 95% ~ 13dB below the
vacuum noise level should be readily achievable.Comment: 4 pages, accepted for publication in Phys. Rev. Let
Relating Superembeddings and Non-linear Realisations
We discuss the relation between the superembedding method for deriving
worldvolume actions for D-branes and the method of Partially Broken Global
Supersymmetry based upon linear and non-linear realisations of SUSY. We give
the explicit relation for the cases of space filling branes in 3 and 4
dimensions and show that the standard F-constraint of the superembedding method
is the source of the required covariant non-linear constraints for the PBGS
method.Comment: 19 pages. Improved spelling, references adde
First-principles quantum dynamics in interacting Bose gases I: The positive P representation
The performance of the positive P phase-space representation for exact
many-body quantum dynamics is investigated. Gases of interacting bosons are
considered, where the full quantum equations to simulate are of a
Gross-Pitaevskii form with added Gaussian noise. This method gives tractable
simulations of many-body systems because the number of variables scales
linearly with the spatial lattice size. An expression for the useful simulation
time is obtained, and checked in numerical simulations. The dynamics of first-,
second- and third-order spatial correlations are calculated for a uniform
interacting 1D Bose gas subjected to a change in scattering length. Propagation
of correlations is seen. A comparison is made to other recent methods. The
positive P method is particularly well suited to open systems as no
conservation laws are hard-wired into the calculation. It also differs from
most other recent approaches in that there is no truncation of any kind.Comment: 21 pages, 7 figures, 2 tables, IOP styl
Short-term and long-term effects of United Nations peace operations
Earlier studies have shown that United Nations peace operations make a positive contribution to peacebuilding efforts after civil wars. But do these effects carry over to the period after the peacekeepers leave? And how do the effects of UN peace operations interact with other determinants of peacebuilding in the long run? The author addresses these questions using a revised version of the Doyle and Sambanis dataset and applying different estimation methods to estimate the short-term and long-term effects of UN peace missions. He finds that UN missions have robust, positive effects on peacebuilding in the short term. UN missions can help parties implement peace agreements but the UN cannot fight wars, and UN operations contribute more to the quality of the peace where peace is based on participation, than to the longevity of the peace, where peace is simply the absence of war. The effects of UN missions are also felt in the long run, but they dissipate over time. What is missing in UN peacebuilding is a strategy to foster the self-sustaining economic growth that could connect increased participation with sustainable peace.Post Conflict Reintegration,Peace&Peacekeeping,International Affairs,Post Conflict Reconstruction,Politics and Government
Kappa-symmetric Derivative Corrections to D-brane Dynamics
We show how the superembedding formalism can be applied to construct
manifestly kappa-symmetric higher derivative corrections for the D9-brane. We
also show that all correction terms appear at even powers of the fundamental
length scale . We explicitly construct the first potential correction, which
corresponds to the kappa-symmetric version of the , which one
finds from the four-point amplitude of the open superstring.Comment: 20 pages. Minor changes, added reference
Generating Entangled Microwave Radiation Over Two Transmission Lines
Using a superconducting circuit, the Josephson mixer, we demonstrate the
first experimental realization of spatially separated two-mode squeezed states
of microwave light. Driven by a pump tone, a first Josephson mixer generates,
out of quantum vacuum, a pair of entangled fields at different frequencies on
separate transmission lines. A second mixer, driven by a -phase shifted
copy of the first pump tone, recombines and disentangles the two fields. The
resulting output noise level is measured to be lower than for vacuum state at
the input of the second mixer, an unambiguous proof of entanglement. Moreover,
the output noise level provides a direct, quantitative measure of entanglement,
leading here to the demonstration of 6 Mebit.s (Mega entangled bits per
second) generated by the first mixer.Comment: 5 pages, 4 figures. Supplementary Information can be found here as an
ancillary fil
Gaussian phase-space representations for fermions
We introduce a positive phase-space representation for fermions, using the
most general possible multi-mode Gaussian operator basis. The representation
generalizes previous bosonic quantum phase-space methods to Fermi systems. We
derive equivalences between quantum and stochastic moments, as well as operator
correspondences that map quantum operator evolution onto stochastic processes
in phase space. The representation thus enables first-principles quantum
dynamical or equilibrium calculations in many-body Fermi systems. Potential
applications are to strongly interacting and correlated Fermi gases, including
coherent behaviour in open systems and nanostructures described by master
equations. Examples of an ideal gas and the Hubbard model are given, as well as
a generic open system, in order to illustrate these ideas.Comment: More references and examples. Much less mathematical materia
- …