3 research outputs found

    Processing of representations in declarative and procedural working memory

    Full text link
    The article investigates the relation between declarative and procedural working memory (WM; Oberauer, 2009). Two experiments test the assumption that representations in the two subsystems are selected for processing in analogous ways. Participants carried out a series of decisions on memorized lists of digits. For each decision, they had to select declarative and procedural representations. Regarding declarative representations, participants selected a memory set and a digit within this set as the input to each decision. With respect to the procedural representations, they selected a task set to be applied to the selected digit and a response within that task set. We independently manipulated the number of lists and the number of tasks to be switched among (one, two, or three; Experiment 1) and preparation time for a list switch (Experiment 2). For three effects commonly observed in task-switch studies, analogues in declarative WM were found: list-switch costs, mixing costs, and residual switch costs. List- and task-switch costs were underadditive, suggesting that declarative and procedural representations are selected separately and in parallel. The findings support the hypothesis of two analogous WM subsystems

    Between-task competition for intentions and actions

    No full text
    Item does not contain fulltextPeople can switch quickly and flexibly from one task to another, but suffer the effects of between-task competition when they do so: After switching, they tend to be distracted by irrelevant stimulus information and hampered by incorrect actions associated with recently performed tasks. This competition results in performance costs of switching, as well as a bias against switching when there is choice over which task to perform, particularly when switching from a difficult task to an easier one. Two experiments investigated the locus of these between-task competition effects in voluntary task switching. Participants switched between an easy location classification and a harder shape classification, making two responses on each trial: the first to register their task choice, the second to perform the chosen task on a subsequently presented stimulus. The results indicated that participants chose to perform the difficult shape task more often than the easier location task, evidence that between-task competition affects intentions that are expressed independently of task-specific actions. The bias was stronger in participants with faster choice speed, suggesting that these influences are relatively automatic. Moreover, even though participants had unlimited time to choose and prepare a task before stimulus presentation, their subsequent performance was nonetheless sensitive to persisting effects of between-task competition. Altogether these results indicate the pervasive influence of between-task competition, which affects both the expression of global task intentions and the production of task-specific actions
    corecore