10 research outputs found

    Antitumor effect of allogenic fibroblasts engineered to express Fas ligand (FasL)

    Get PDF
    Fas ligand is a type II transmembrane protein which can induce apoptosis in Fas-expressing cells. Recent reports indicate that expression of FasL in transplanted cells may cause graft rejection and, on the other hand, tumor cells may lose their tumorigenicity when they are engineered to express FasL. These effects could be related to recruitment of neutrophils by FasL with activation of their cytotoxic machinery. In this study we investigated the antitumor effect of allogenic fibroblasts engineered to express FasL. Fibroblasts engineered to express FasL (PA317/FasL) did not exert toxic effects on transformed liver cell line (BNL) or colon cancer cell line (CT26) in vitro, but they could abrogate their tumorigenicity in vivo. Histological examination of the site of implantation of BNL cells mixed with PA317/FasL revealed massive infiltration of polymorphonuclear neutrophils and mononuclear cells. A specific immune protective effect was observed in animals primed with a mixture of BNL or CT26 and PA317/FasL cells. Rechallenge with tumor cells 14 or 100 days after priming resulted in protection of 100 or 50% of animals, respectively. This protective effect was due to CD8+ cells since depletion of CD8+ led to tumor formation. In addition, treatment of pre-established BNL tumors with a subcutaneous injection of BNL and PA317/FasL cell mixture at a distant site caused significant inhibition of tumor growth. These data demonstrate that allogenic cells engineered with FasL are able to abolish tumor growth and induce specific protective immunity when they are mixed with neoplastic cells

    Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12

    Get PDF
    Interleukin-12 (IL-12) has been shown to possess potent immunoregulatory and antitumoral effects. We have evaluated the anti-oncogenic potential and the mechanisms of the antitumoral effect of in vivo adenovirus-mediated transfer of IL-12 gene in a murine model of colon cancer. AdCMVIL-12 was constructed to permit coordinated production of p40 and p35 subunits of IL-12 gene to obtain the maximum IL-12 bioactivity. Infection of murine colon cancer CT-26 cells in vitro with AdCMVIL-12 resulted in the production of high levels of IL-12. In vivo gene therapy of colon cancer nodules by intratumoral injection of AdCMVIL-12 induced a local increase in IL-12 and interferon-gamma levels and a complete regression of the tumor in 26 of 34 (76%) mice. Tumor disappeared between days 7 and 10 after vector administration. The antitumoral effect was mediated by CD8+ T cells and was associated with the generation of cytotoxic T lymphocytes against colon cancer cells. Animals that eliminated the tumor were protected against a second administration of neoplastic cells. Treatment with AdCMVIL-12 of one tumor nodule also caused regression of established tumors at distant sites. These data demonstrate that AdCMVIL-12 is a useful therapeutic tool for established colon cancer in mice and should be considered for application in humans

    Antitumor effect of allogenic fibroblasts engineered to express Fas ligand (FasL)

    No full text
    Fas ligand is a type II transmembrane protein which can induce apoptosis in Fas-expressing cells. Recent reports indicate that expression of FasL in transplanted cells may cause graft rejection and, on the other hand, tumor cells may lose their tumorigenicity when they are engineered to express FasL. These effects could be related to recruitment of neutrophils by FasL with activation of their cytotoxic machinery. In this study we investigated the antitumor effect of allogenic fibroblasts engineered to express FasL. Fibroblasts engineered to express FasL (PA317/FasL) did not exert toxic effects on transformed liver cell line (BNL) or colon cancer cell line (CT26) in vitro, but they could abrogate their tumorigenicity in vivo. Histological examination of the site of implantation of BNL cells mixed with PA317/FasL revealed massive infiltration of polymorphonuclear neutrophils and mononuclear cells. A specific immune protective effect was observed in animals primed with a mixture of BNL or CT26 and PA317/FasL cells. Rechallenge with tumor cells 14 or 100 days after priming resulted in protection of 100 or 50% of animals, respectively. This protective effect was due to CD8+ cells since depletion of CD8+ led to tumor formation. In addition, treatment of pre-established BNL tumors with a subcutaneous injection of BNL and PA317/FasL cell mixture at a distant site caused significant inhibition of tumor growth. These data demonstrate that allogenic cells engineered with FasL are able to abolish tumor growth and induce specific protective immunity when they are mixed with neoplastic cells
    corecore