915 research outputs found
Multiple scattering of matter waves: an analytic model of the refractive index for atomic and molecular gases
We present an analytic model of the refractive index for matter waves
propagating through atomic or molecular gases. The model, which combines a WKB
treatment of the long range attraction with the Fraunhofer model treatment of
the short range repulsion, furnishes a refractive index in compelling agreement
with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)]
on Li atom matter waves passing through dilute noble gases. We show that the
diffractive contribution, which arises from scattering by a two dimensional
"hard core" of the potential, is essential for obtaining a correct imaginary
part of the refractive index.Comment: 5 pages, 1 figure, 2 table
An analytic model of rotationally inelastic collisions of polar molecules in electric fields
We present an analytic model of thermal state-to-state rotationally inelastic
collisions of polar molecules in electric fields. The model is based on the
Fraunhofer scattering of matter waves and requires Legendre moments
characterizing the "shape" of the target in the body-fixed frame as its input.
The electric field orients the target in the space-fixed frame and thereby
effects a striking alteration of the dynamical observables: both the phase and
amplitude of the oscillations in the partial differential cross sections
undergo characteristic field-dependent changes that transgress into the partial
integral cross sections. As the cross sections can be evaluated for a field
applied parallel or perpendicular to the relative velocity, the model also
offers predictions about steric asymmetry. We exemplify the field-dependent
quantum collision dynamics with the behavior of the Ne-OCS() and
Ar-NO() systems. A comparison with the close-coupling calculations
available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)]
demonstrates the model's ability to qualitatively explain the field dependence
of all the scattering features observed
Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se
Topological crystalline insulators represent a novel topological phase of
matter in which the surface states are protected by discrete point
group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy
is one possible realization of this phase which undergoes a topological phase
transition upon changing the lead content. We used scanning tunneling
microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe
the surface states on (001) PbSnSe in the topologically
non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed
quasiparticle interference with STM on the surface of the topological
crystalline insulator and demonstrated that the measured interference can be
understood from ARPES studies and a simple band structure model. Furthermore,
our findings support the fact that PbSnSe and PbSe have
different topological nature.Comment: 5 pages, 4 figure
The nonlinear time-dependent response of isotactic polypropylene
Tensile creep tests, tensile relaxation tests and a tensile test with a
constant rate of strain are performed on injection-molded isotactic
polypropylene at room temperature in the vicinity of the yield point. A
constitutive model is derived for the time-dependent behavior of
semi-crystalline polymers. A polymer is treated as an equivalent network of
chains bridged by permanent junctions. The network is modelled as an ensemble
of passive meso-regions (with affine nodes) and active meso-domains (where
junctions slip with respect to their positions in the bulk medium with various
rates). The distribution of activation energies for sliding in active
meso-regions is described by a random energy model. Adjustable parameters in
the stress--strain relations are found by fitting experimental data. It is
demonstrated that the concentration of active meso-domains monotonically grows
with strain, whereas the average potential energy for sliding of junctions and
the standard deviation of activation energies suffer substantial drops at the
yield point. With reference to the concept of dual population of crystalline
lamellae, these changes in material parameters are attributed to transition
from breakage of subsidiary (thin) lamellae in the sub-yield region to
fragmentation of primary (thick) lamellae in the post-yield region of
deformation.Comment: 29 pages, 12 figure
Kinetic equations for thermal degradation of polymers
Kinetic equations are analyzed for thermal degradation of polymers. The
governing relations are based on the fragmentation-annihilation concept.
Explicit solutions to these equations are derived in two particular cases of
interest. For arbitrary values of adjustable parameters, the evolution of the
number-average and mass-average molecular weights of polymers is analyzed
numerically. Good agreement is demonstrated between the results of numerical
simulation and experimental data. It is revealed that the model can correctly
predict observations in thermo-gravimetric tests when its parameters are
determined by matching experimental data for the decrease in molecular weight
with exposure time
Termination dependent topological surface states of the natural superlattice phase BiSe
We describe the topological surface states of BiSe, a compound in the
infinitely adaptive Bi-BiSe natural superlattice phase series,
determined by a combination of experimental and theoretical methods. Two
observable cleavage surfaces, terminating at Bi or Se, are characterized by
angle resolved photoelectron spectroscopy and scanning tunneling microscopy,
and modeled by ab-initio density functional theory calculations. Topological
surface states are observed on both surfaces, but with markedly different
dispersions and Kramers point energies. BiSe therefore represents the
only known compound with different topological states on differently terminated
surfaces.Comment: 5 figures references added Published in PRB:
http://link.aps.org/doi/10.1103/PhysRevB.88.08110
Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod
We study waves in a rod of finite length with a viscoelastic constitutive
equation of fractional distributed-order type for the special choice of weight
functions. Prescribing boundary conditions on displacement, we obtain case
corresponding to stress relaxation. In solving system of differential and
integro-differential equations we use the Laplace transformation in the time
domain
- …