388 research outputs found

    Simulations of collision times in gravity driven granular flow

    Full text link
    We use simulations to investigate collision time distributions as one approaches the static limit of steady-state flow of dry granular matter. The collision times fall in a power-law distribution with an exponent dictated by whether the grains are ordered or disordered. Remarkably, the exponents have almost no dependence on dimension. We are also able to resolve a disagreement between simulation and experiments on the exponent of the collision time power-law distribution.Comment: 7 pages, 5 figure

    The Demographic Foundation of Education in the Great Plains

    Get PDF
    Presented at the School Conslidation in the Great Plains 2013 Symposium in Kearney, Nebraska

    The 2005 Benson Residents Survey

    Get PDF
    The Center for Public Affairs Research and the Urban Studies Program at the University of Nebraska at Omaha organized a telephone survey of Benson-area residents. The survey identified various neighborhood perceptions and activity patterns of alliance residents. The interviews occurred between November 20 and December 4, 2005, with 387 interviews being completed

    Nebraska’s Community Airports: A Study of Organizational, Financial, and Management Practices: Summary report

    Get PDF
    Rural and non-metropolitan public-use and general aviation airports play a critical role in the economic development of communities in agricultural states and states with dispersed populations. Not only do they serve as a vital link to markets and resources for both agricultural and non-agricultural businesses operating in the community, small airports provide needed transportation options for area residents. These airports also perform an important function in providing needed health and medical transport services in non-metropolitan locations. Airports can be described as critical “public assets” with needed services to the local community (Penney 2003)

    Structural phase transitions and their influence on Cu+ mobility in superionic ferroelastic Cu6PS5I single crystals

    Full text link
    The structural origin of Cu+ ions conductivity in Cu6PS5I single crystals is described in terms of structural phase transitions studied by X-ray diffraction, polarizing microscope and calorimetric measurements. Below the phase transition at Tc=(144-169) K Cu6PS5I belongs to monoclinic, ferroelastic phase, space group Cc. Above Tc crystal changes the symmetry to cubic superstructure, space group F-43c (a=19.528); finally at 274K disordering of the Cu+ ions increases the symmetry to F-43m, (a=9.794). The phase transition at 274K coincides well with a strong anomaly in electrical conductivity observed in the Arrhenius plot. Diffusion paths for Cu+ ions are evidenced by means of the atomic displacement factors and split model. Influence of the copper stechiometry on the Tc is also discussed.Comment: conference pape

    A study of the gravitational wave form from pulsars II

    Full text link
    We present analytical and numerical studies of the Fourier transform (FT) of the gravitational wave (GW) signal from a pulsar, taking into account the rotation and orbital motion of the Earth. We also briefly discuss the Zak-Gelfand Integral Transform. The Zak-Gelfand Integral Transform that arises in our analytic approach has also been useful for Schrodinger operators in periodic potentials in condensed matter physics (Bloch wave functions).Comment: 6 pages, Sparkler talk given at the Amaldi Conference on Gravitational waves, July 10th, 2001. Submitted to Classical and Quantum Gravit

    Optimization of an Alkylpolyglucoside-Based Dishwashing Detergent Formulation.

    Get PDF
    The aim of this work was to formulate and optimize the washing performance of an alkylpolyglucoside-based dishwashing detergent. The liquid detergent was formulated with five ingredients of commercial origin: anionic (linear sodium alkylbenzenesulfonate and sodium laurylethersulfate), nonionic (C12–C14 alkylpolyglucoside) and zwitterionic (a fatty acid amide derivative with a betaine structure) surfactants, and NaCl for viscosity control. In addition to the plate test, other properties were investigated including ‘‘cloud point’’, viscosity, and emulsion stability. Statistical analysis software was used to generate a central composite experimental design. Then, a second order design and analysis of experiments approach, known as the Response Surface Methodology, was set up to investigate the effects of the five components of the formulation on the studied properties in the region covering plausible component ranges. The method proved to be efficient for locating the domains of concentrations where the desired properties were met

    Synthesis and Characterization of LiFePO4 and LiTi0.01Fe0.99PO4 Cathode Materials

    Get PDF
    Nanocrystalline LiFePO4 and doped LiTi0.01Fe0.99PO4 powders were synthesized via a sol-gel preparation route. High-resolution tunneling electron microscopy observation and energy dispersive spectroscopy, mapping show the homogeneous distribution of dopant Ti cations in the crystals. Fe and O K -edge X-ray absorption near-edge structure (XANES) measurements show that Ti4+ doping induces an increased unoccupied d-state in LiFePO4, resulting in an enhanced p-type semiconductivity. In situ Fe K -edge XANES measurements of Ti-doped and undoped LiFePO4 electrodes have been performed to determine the change of Fe valence during the lithium intercalation and de-intercalation processes. Both LiFePO4 and doped LiTi0.01Fe0.99PO4 cathodes demonstrate good electrochemical performance

    Synthesis and Characterization of LiFePO4 and LiTi0.01Fe0.99PO4 Cathode Materials

    Get PDF
    Nanocrystalline LiFePO4 and doped LiTi0.01Fe0.99PO4 powders were synthesized via a sol-gel preparation route. High-resolution tunneling electron microscopy observation and energy dispersive spectroscopy, mapping show the homogeneous distribution of dopant Ti cations in the crystals. Fe and O K -edge X-ray absorption near-edge structure (XANES) measurements show that Ti4+ doping induces an increased unoccupied d-state in LiFePO4, resulting in an enhanced p-type semiconductivity. In situ Fe K -edge XANES measurements of Ti-doped and undoped LiFePO4 electrodes have been performed to determine the change of Fe valence during the lithium intercalation and de-intercalation processes. Both LiFePO4 and doped LiTi0.01Fe0.99PO4 cathodes demonstrate good electrochemical performance

    Modelling of COVID-19 Using Fractional Differential Equations

    Get PDF
    In this work, we have described the mathematical modeling of COVID-19 transmission using fractional differential equations. The mathematical modeling of infectious disease goes back to the 1760s when the famous mathematician Daniel Bernoulli used an elementary version of compartmental modeling to find the effectiveness of deliberate smallpox inoculation on life expectancy. We have used the well-known SIR (Susceptible, Infected and Recovered) model of Kermack & McKendrick to extend the analysis further by including exposure, quarantining, insusceptibility and deaths in a SEIQRDP model. Further, we have generalized this model by using the solutions of Fractional Differential Equations to test the accuracy and validity of the mathematical modeling techniques against Canadian COVID-19 trends and spread of real-world disease. Our work also emphasizes the importance of Personal Protection Equipment (PPE) and impact of social distancing on controlling the spread of COVID-19
    • …
    corecore