777 research outputs found

    Probabilistic ballistic annihilation with continuous velocity distributions

    Full text link
    We investigate the problem of ballistically controlled reactions where particles either annihilate upon collision with probability pp, or undergo an elastic shock with probability 1p1-p. Restricting to homogeneous systems, we provide in the scaling regime that emerges in the long time limit, analytical expressions for the exponents describing the time decay of the density and the root-mean-square velocity, as continuous functions of the probability pp and of a parameter related to the dissipation of energy. We work at the level of molecular chaos (non-linear Boltzmann equation), and using a systematic Sonine polynomials expansion of the velocity distribution, we obtain in arbitrary dimension the first non-Gaussian correction and the corresponding expressions for the decay exponents. We implement Monte-Carlo simulations in two dimensions, that are in excellent agreement with our analytical predictions. For p<1p<1, numerical simulations lead to conjecture that unlike for pure annihilation (p=1p=1), the velocity distribution becomes universal, i.e. does not depend on the initial conditions.Comment: 10 pages, 9 eps figures include

    Search for universality in one-dimensional ballistic annihilation kinetics

    Full text link
    We study the kinetics of ballistic annihilation for a one-dimensional ideal gas with continuous velocity distribution. A dynamical scaling theory for the long time behavior of the system is derived. Its validity is supported by extensive numerical simulations for several velocity distributions. This leads us to the conjecture that all the continuous velocity distributions \phi(v) which are symmetric, regular and such that \phi(0) does not vanish, are attracted in the long time regime towards the same Gaussian distribution and thus belong to the same universality class. Moreover, it is found that the particle density decays as n(t)~t^{-\alpha}, with \alpha=0.785 +/- 0.005.Comment: 8 pages, needs multicol, epsf and revtex. 8 postscript figures included. Submitted to Phys. Rev. E. Also avaiable at http://mykonos.unige.ch/~rey/publi.html#Secon

    Front motion in an A+BCA+B\to C type reaction-diffusion process: Effects of an electric field

    Full text link
    We study the effects of an external electric field on both the motion of the reaction zone and the spatial distribution of the reaction product, CC, in an irreversible A+B+CA^- +B^+ \to C reaction-diffusion process. The electrolytes A(A+,A)A\equiv (A^+,A^-) and B(B+,B)B\equiv (B^+,B^-) are initially separated in space and the ion-dynamics is described by reaction-diffusion equations obeying local electroneutrality. Without an electric field, the reaction zone moves diffusively leaving behind a constant concentration of CC-s. In the presence of an electric field which drives the reagents towards the reaction zone, we find that the reaction zone still moves diffusively but with a diffusion coefficient which slightly decreases with increasing field. The important electric field effect is that the concentration of CC-s is no longer constant but increases linearly in the direction of the motion of the front. The case of an electric field of reversed polarity is also discussed and it is found that the motion of the front has a diffusive, as well as a drift component. The concentration of CC-s decreases in the direction of the motion of the front, up to the complete extinction of the reaction. Possible applications of the above results to the understanding of the formation of Liesegang patterns in an electric field is briefly outlined.Comment: 13 pages, 13 figures, submitted to J. Chem. Phy

    Liesegang patterns : Studies on the width law

    Full text link
    The so-called "width law" for Liesegang patterns, which states that the positions x_n and widths w_n of bands verify the relation x_n \sim w_n^{\alpha} for some \alpha>0, is investigated both experimentally and theoretically. We provide experimental data exhibiting good evidence for values of \alpha close to 1. The value \alpha=1 is supported by theoretical arguments based on a generic model of reaction-diffusion.Comment: 7 pages, RevTeX, two columns, 5 figure

    Can the post-Newtonian gravitational waveform of an inspiraling binary be improved by solving the energy balance equation numerically?

    Get PDF
    The detection of gravitational waves from inspiraling compact binaries using matched filtering depends crucially on the availability of accurate template waveforms. We determine whether the accuracy of the templates' phasing can be improved by solving the post-Newtonian energy balance equation numerically, rather than (as is normally done) analytically within the post-Newtonian perturbative expansion. By specializing to the limit of a small mass ratio, we find evidence that there is no gain in accuracy.Comment: 13 pages, RevTeX, 5 figures included via eps

    Formation of Liesegang patterns: Simulations using a kinetic Ising model

    Full text link
    A kinetic Ising model description of Liesegang phenomena is studied using Monte Carlo simulations. The model takes into account thermal fluctuations, contains noise in the chemical reactions, and its control parameters are experimentally accessible. We find that noisy, irregular precipitation takes place in dimension d=2 while, depending on the values of the control parameters, either irregular patterns or precipitation bands satisfying the regular spacing law emerge in d=3.Comment: 7 pages, 8 ps figures, RevTe

    Kinetics of ballistic annihilation and branching

    Full text link
    We consider a one-dimensional model consisting of an assembly of two-velocity particles moving freely between collisions. When two particles meet, they instantaneously annihilate each other and disappear from the system. Moreover each moving particle can spontaneously generate an offspring having the same velocity as its mother with probability 1-q. This model is solved analytically in mean-field approximation and studied by numerical simulations. It is found that for q=1/2 the system exhibits a dynamical phase transition. For q<1/2, the slow dynamics of the system is governed by the coarsening of clusters of particles having the same velocities, while for q>1/2 the system relaxes rapidly towards its stationary state characterized by a distribution of small cluster sizes.Comment: 10 pages, 11 figures, uses multicol, epic, eepic and eepicemu. Also avaiable at http://mykonos.unige.ch/~rey/pubt.htm

    Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal gas

    Full text link
    Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal gas is studied in the framework of an exact analytic approach. For an initial symmetric three-velocity distribution, the problem can be solved exactly and it is shown that different regimes exist depending on the initial fraction of particles at rest. Extension to the case of a n-velocity distribution is discussed.Comment: 19 pages, latex, uses Revtex macro

    Derivation of the Matalon-Packter law for Liesegang patterns

    Full text link
    Theoretical models of the Liesegang phenomena are studied and simple expressions for the spacing coefficients characterizing the patterns are derived. The emphasis is on displaying the explicit dependences on the concentrations of the inner- and the outer-electrolytes. Competing theories (ion-product supersaturation, nucleation and droplet growth, induced sol- coagulation) are treated with the aim of finding the distinguishing features of the theories. The predictions are compared with experiments and the results suggest that the induced sol-coagulation theory is the best candidate for describing the experimental observations embodied in the Matalon-Packter law.Comment: 9 pages, 7 figures, RevTe

    Dynamical real-space renormalization group calculations with a new clustering scheme on random networks

    Full text link
    We have defined a new type of clustering scheme preserving the connectivity of the nodes in network ignored by the conventional Migdal-Kadanoff bond moving process. Our new clustering scheme performs much better for correlation length and dynamical critical exponents in high dimensions, where the conventional Migdal-Kadanoff bond moving scheme breaks down. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising Model to be z=2.13 and z=2.09, respectively at pure Ising fixed point. These values are in very good agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behaviour for randomly bond diluted lattices in d=2 and 3, in the light of this new transformation. We also provide exact correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law degree distributions, both in the pure and random cases.Comment: 8 figure
    corecore