10 research outputs found

    A simple electronic device for time-lapse recording of neural and other cell movements using a home video cassette recorder

    Get PDF
    This article describes a simple electronic unit to obtain time-lapse recordings with the use of a common remote-controlled home video cassette recorder, for example a VHS recorder. The electronic unit is a timer to be connected to the remote-control unit. The video cassette recorder itself remains unchanged. Replay of the recorded images speeds up the original process by a factor of 2-100 × or more. This technique has been applied in video micrographic studies of (1) the development of dorsal root ganglion (DRG) cells in culture, including growth cone and Schwann cell movements, and (2) tumor cell killing by natural killer (NK) cells

    Prospective individual patient data meta-analysis of two randomized trials on convalescent plasma for COVID-19 outpatients

    Full text link
    Data on convalescent plasma (CP) treatment in COVID-19 outpatients are scarce. We aimed to assess whether CP administered during the first week of symptoms reduced the disease progression or risk of hospitalization of outpatients. Two multicenter, double-blind randomized trials (NCT04621123, NCT04589949) were merged with data pooling starting when = 50 years and symptomatic for <= 7days were included. The intervention consisted of 200-300mL of CP with a predefined minimum level of antibodies. Primary endpoints were a 5-point disease severity scale and a composite of hospitalization or death by 28 days. Amongst the 797 patients included, 390 received CP and 392 placebo; they had a median age of 58 years, 1 comorbidity, 5 days symptoms and 93% had negative IgG antibody-test. Seventy-four patients were hospitalized, 6 required mechanical ventilation and 3 died. The odds ratio (OR) of CP for improved disease severity scale was 0.936 (credible interval (CI) 0.667-1.311); OR for hospitalization or death was 0.919 (CI 0.592-1.416). CP effect on hospital admission or death was largest in patients with <= 5 days of symptoms (OR 0.658, 95%CI 0.394-1.085). CP did not decrease the time to full symptom resolution

    Continuous on-body sensing of ground-reaction forces

    No full text

    Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses

    Get PDF
    Many of the currently available myoelectric forearm prostheses stay unused because of the lack of sensory feedback. Vibrotactile and electrotactile stimulation have high potential to provide this feedback. In this study, performance of a grasping task is investigated for different hand opening feedback conditions on 15 healthy subjects and validated on three patients. The opening of a virtual hand was controlled by a scroll wheel. Feedback about hand opening was given via an array of eight vibrotactile or electrotactile stimulators placed on the forearm, relating to eight hand opening positions. A longitudinal and transversal orientation of the array and four feedback conditions were investigated: no feedback, visual feedback, feedback through vibrotactile or electrotactile stimulation, and addition of an extra stimulator for touch feedback. No influence of array orientation was shown for all outcome parameters (duration of the task, the percentage of correct hand openings, the mean position error, and the percentage deviations up to one position). Vibrotactile stimulation enhances the performance compared to the nonfeedback conditions. The addition of touch feedback further increases the performance, but at the cost of an increased duration. The same effects were found for the patient group, but the task duration was around 25% larger

    A Full Body Sensing System for Monitoring Stroke Patients in a Home Environment

    Get PDF
    Currently, the changes in functional capacity and performance of stroke patients after returning home from a rehabilitation hospital is unknown to a physician, having no objective information about the intensity and quality of a patient’s daily-life activities. Therefore, there is a need to develop and validate an unobtrusive and modular system for objectively monitoring the stroke patient’s upper and lower extremity motor function in daily-life activities and in home training. This is the main goal of the European FP7 project named “INTERACTION”. A complete full body sensing system is developed, whicj integrates Inertial Measurement Units (IMU), Knitted Piezoresistive Fabric (KPF) strain sensors, KPF goniometers, EMG electrodes and force sensors into a modular sensor suit designed for stroke patients. In this paper, we describe the complete INTERACTION sensor system. Data from the sensors are captured wirelessly by a software application and stored in a remote secure database for later access and processing via portal technology. Data processing includes a 3D full body reconstruction by means of the Xsens MoCap Engine, providing position and orientation of each body segment (poses). In collaboration with clinicians and engineers, clinical assessment measures were defined and the question of how to present the data on the web portal was addressed. The complete sensing system is fully implemented and is currently being validated. Patients measurements start in June 2014

    Daily-life tele-monitoring of motor performance in stroke survivors

    Get PDF
    The objective of the EU project INTERACTION is to develop an unobtrusive and modular sensing system for objective monitoring of daily-life motor performance of stroke survivors. This will enable clinical professionals to advise their patients about their continued daily-life activity profile and home training, and evaluate and optimize rehabilitation programs.A modular textile-integrated sensing system was developed and performance and capacity measures were proposed and clinically tested in stroke subject.Telemonitoring facilities were developed and tested. In the last stage of the project, the system will be tested during daily-life
    corecore