17 research outputs found

    Essential role of PDK1 in regulating endothelial cell migration

    Get PDF
    The serine/threonine protein kinase phosphoinositide-dependent kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases, including PKB/Akt. We now present evidence showing that PDK1 is essential for the motility of vascular endothelial cells (ECs) and that it is involved in the regulation of their chemotaxis. ECs differentiated from mouse embryonic stem cells lacking PDK1 completely lost their ability to migrate in vitro in response to vascular endothelial growth factor-A (VEGF-A). In addition, PDK1−/− embryoid bodies exhibit evident developmental and vascular defects that can be attributed to a reduced cell migration. Moreover, the overexpression of PDK1 increased the EC migration induced by VEGF-A. We propose a model of spatial distribution of PDK1 and Akt in which the synthesis of phosphatidylinositol 3,4,5 triphosphate at plasma membrane by activation of phosphoinositide 3-kinase recruits both proteins at the leading edge of the polarized ECs and promotes cell chemotaxis. These findings establish a mechanism for the spatial localization of PDK1 and its substrate Akt to regulate directional migration

    Expression of the IRTA1 receptor identifies intraepithelial and subepithelial marginal zone B cells of the mucosa-associated lymphoid tissue (MALT)

    Get PDF
    AbstractIRTA1 (immunoglobulin superfamily receptor translocation-associated 1) is a novel surface B-cell receptor related to Fc receptors, inhibitory receptor superfamily (IRS), and cell adhesion molecule (CAM) family members and we mapped for the first time its distribution in human lymphoid tissues, using newly generated specific antibodies. IRTA1 was selectively and consistently expressed by a B-cell population located underneath and within the tonsil epithelium and dome epithelium of Peyer patches (regarded as the anatomic equivalents of marginal zone). Similarly, in mucosa-associated lymphoid tissue (MALT) lymphomas IRTA1 was mainly expressed by tumor cells involved in lympho-epithelial lesions. In contrast, no or a low number of IRTA1+ cells was usually observed in the marginal zone of mesenteric lymph nodes and spleen. Interestingly, monocytoid B cells in reactive lymph nodes were strongly IRTA1+. Tonsil IRTA1+ cells expressed the memory B-cell marker CD27 but not mantle cell-, germinal center-, and plasma cell-associated molecules. Polymerase chain reaction (PCR) analysis of single tonsil IRTA1+ cells showed they represent a mixed B-cell population carrying mostly mutated, but also unmutated, IgV genes. The immunohistochemical finding in the tonsil epithelial areas of aggregates of IRTA1+ B cells closely adjacent to plasma cells surrounding small vessels suggests antigen-triggered in situ proliferation/differentiation of memory IRTA1+ cells into plasma cells. Collectively, these results suggest a role of IRTA1 in the immune function of B cells within epithelia. (Blood. 2003;102: 3684-3692

    Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy

    Get PDF
    Angiogenesis and post-natal vasculogenesis are two processes involved in the formation of new vessels, and both are essential for tumour growth and metastases. We isolated endothelial cells from human blood mononuclear cells by selective culture. These blood outgrowth cells expressed endothelial cell markers and responded correctly to functional assays. To evaluate the potential of blood outgrowth endothelial cells (BOECs) to construct functional vessels in vivo, NOD-SCID mice were implanted with Lewis lung carcinoma cells subcutaneously (s.c.). Blood outgrowth endothelial cells were then injected through the tail vein. Initial distribution of these cells occurred throughout the lung, liver, spleen, and tumour vessels, but they were only found in the spleen, liver, and tumour tissue 48 h after injection. By day 24, they were mainly found in the tumour vasculature. Tumour vessel counts were also increased in mice receiving BOEC injections as compared to saline injections. We engineered BOECs to deliver an angiogenic inhibitor directly to tumour endothelium by transducing them with the gene for human endostatin. These cells maintained an endothelial phenotype and decreased tumour vascularisation and tumour volume in mice. We conclude that BOECs have the potential for tumour-specific delivery of cancer gene therapy

    Rapid Anastomosis of Endothelial Progenitor Cell–Derived Vessels with Host Vasculature Is Promoted by a High Density of Cotransplanted Fibroblasts

    No full text
    To ensure survival of engineered implantable tissues thicker than approximately 2–3 mm, convection of nutrients and waste products to enhance the rate of transport will be required. Creating a network of vessels in vitro, before implantation (prevascularization), is one potential strategy to achieve this aim. In this study, we developed three-dimensional engineered vessel networks in vitro by coculture of endothelial cells (ECs) and fibroblasts in a fibrin gel for 7 days. Vessels formed by cord blood endothelial progenitor cell–derived ECs (EPC-ECs) in the presence of a high density of fibroblasts created an interconnected tubular network within 4 days, compared with 5–7 days in the presence of a low density of fibroblasts. Vessels derived from human umbilical vein ECs (HUVECs) in vitro showed similar kinetics. Implantation of the prevascularized tissues into immune-compromised mice, however, revealed a dramatic difference in the ability of EPC-ECs and HUVECs to form anastomoses with the host vasculature. Vascular beds derived from EPC-ECs were perfused within 1 day of implantation, whereas no HUVEC vessels were perfused at day 1. Further, while almost 90% of EPC-EC–derived vascular beds were perfused at day 3, only one-third of HUVEC-derived vascular beds were perfused. In both cases, a high density of fibroblasts accelerated anastomosis by 2–3 days. We conclude that both EPC-ECs and a high density of fibroblasts significantly accelerate the rate of functional anastomosis, and that prevascularizing an engineered tissue may be an effective strategy to enhance convective transport of nutrients in vivo

    An X chromosome-linked gene encoding a protein with characteristic of rhoGAP predominantely expressed in hematopietic cells.

    No full text
    An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by CI, p115, is synthesized predominantly in cells of hematopoietic origin, It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions, Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells
    corecore