7 research outputs found

    Cannabidiol attenuates inflammatory impairment of intestinal cells expanding biomaterial-based therapeutic approaches

    Get PDF
    Cannabis-based biomaterials have the potential to deliver anti-inflammatory therapeutics specifically to desired cells, tissues, and organs, enhancing drug delivery and the effectiveness of anti-inflammatory treatment while minimizing toxicity. As a major component of Cannabis, Cannabidiol (CBD) has gained major attention in recent years because of its potential therapeutic properties, e.g., for restoring a disturbed barrier resulting from inflammatory conditions. The aim of this study was to test the hypothesis that CBD has beneficial effects under normal and inflammatory conditions in the established non-transformed intestinal epithelial cell model IPEC-J2. CBD induced a significant increase in transepithelial electrical resistance (TER) values and a decrease in the paracellular permeability of [³H]-D-Mannitol, indicating a strengthening effect on the barrier. Under inflammatory conditions induced by tumor necrosis factor alpha (TNFα), CBD stabilized the TER and mitigated the increase in paracellular permeability. Additionally, CBD prevented the barrier-disrupting effects of TNFα on the distribution and localization of sealing TJ proteins. CBD also affected the expression of TNF receptors. These findings demonstrate the potential of CBD as a component of Cannabis-based biomaterials used in the development of novel therapeutic approaches against inflammatory pathogenesis

    Concerted action of berberine in the porcine intestinal epithelial model IPEC-J2: Effects on tight junctions and apoptosis

    Get PDF
    The plant alkaloid berberine has been shown to have many beneficial effects on human health. This has led to its use as a treatment for various cancer types, obesity, and diabetes. Moreover, a described barrier-strengthening effect in human cancer cell lines indicates that it might be useful for the treatment of inflammatory bowel disease. Detailed information regarding its effects on intestinal epithelium remains limited. In our current study, we describe the impact of berberine on a non-transformed porcine small intestinal epithelial cell model, IPEC-J2. Incubation of IPEC-J2 monolayers with berberine revealed dose- and time-dependent effects on barrier properties. A viability assay confirmed the specific effect of berberine on the apoptotic pathway, paralleled by the internalization of the sealing tight-junction (TJ) proteins claudin-1, claudin-3, and occludin within 6 h. Hence, the barrier function of the cells was reduced, as shown by the reduced transepithelial electrical resistance and the increased [3H]-D-Mannitol flux. A decrease of claudin-1, claudin-3, and occludin expression was also observed after 24 h, whereas ZO-1 expression was not significantly changed. These data indicate an early effect on both cell viability and barrier integrity, followed by a general effect on TJ architecture. The intracellular co-localization of claudin-1 and occludin or claudin-3 and occludin points to an initial induction of apoptosis accompanied by the internalization of sealing TJ proteins. Although barrier strengthening has been reported in cancerogenic epithelial models, our results show a barrier-weakening action, which represents a new aspect of the effect of berberine on epithelia. These results agree with the known toxic potential of plant alkaloids in general and show that berberine is also capable of exerting adverse effects in the intestinal epithelium

    Effects of 1,2-Dimethylhydrazine on Barrier Properties of Rat Large Intestine and IPEC-J2 Cells

    Get PDF
    Colon cancer is accompanied by a decrease of epithelial barrier properties, which are determined by tight junction (TJ) proteins between adjacent epithelial cells. The aim of the current study was to analyze the expression of TJ proteins in a rat model of 1,2-dimethylhydrazine (DMH)-induced colorectal cancer, as well as the barrier properties and TJ protein expression of IPEC-J2 cell monolayers after incubation with DMH. Transepithelial electrical resistance and paracellular permeability for sodium fluorescein of IPEC-J2 were examined by an epithelial volt/ohm meter and spectrophotometry. The expression and localization of TJ proteins were analyzed by immunoblotting and immunohistochemistry. In the colonic tumors of rats with DMH-induced carcinogenesis, the expression of claudin-3 and -4 was significantly increased compared to controls. The transepithelial electrical resistance of IPEC-J2 cells increased, while paracellular permeability for sodium fluorescein decreased, accompanied by an increased expression of claudin-4. The increase of claudin-4 in rat colon after chronic DMH exposure was consistent with the acute effect of DMH on IPEC-J2 cells, which may indicate an essential role of this protein in colorectal cancer development

    Cannabidiol attenuates inflammatory impairment of intestinal cells expanding biomaterial-based therapeutic approaches

    No full text
    Cannabis-based biomaterials have the potential to deliver anti-inflammatory therapeutics specifically to desired cells, tissues, and organs, enhancing drug delivery and the effectiveness of anti-inflammatory treatment while minimizing toxicity. As a major component of Cannabis, Cannabidiol (CBD) has gained major attention in recent years because of its potential therapeutic properties, e.g., for restoring a disturbed barrier resulting from inflammatory conditions. The aim of this study was to test the hypothesis that CBD has beneficial effects under normal and inflammatory conditions in the established non-transformed intestinal epithelial cell model IPEC-J2. CBD induced a significant increase in transepithelial electrical resistance (TER) values and a decrease in the paracellular permeability of [³H]-D-Mannitol, indicating a strengthening effect on the barrier. Under inflammatory conditions induced by tumor necrosis factor alpha (TNFα), CBD stabilized the TER and mitigated the increase in paracellular permeability. Additionally, CBD prevented the barrier-disrupting effects of TNFα on the distribution and localization of sealing TJ proteins. CBD also affected the expression of TNF receptors. These findings demonstrate the potential of CBD as a component of Cannabis-based biomaterials used in the development of novel therapeutic approaches against inflammatory pathogenesis

    Barrier Perturbation in Porcine Peyer’s Patches by Tumor Necrosis Factor is Associated With a Dysregulation of Claudins

    Get PDF
    The proinflammatory cytokine tumor necrosis factor (TNF) has been described as one of the main mediators of intestinal inflammatory diseases, affecting the composition of tight junction (TJ) proteins and leading to a disruption of the epithelial barrier. An intact intestinal barrier is mandatory, because the follicle-associated epithelium of Peyer’s patches represents the first defense line of the intestinal immune system and ensures a controlled uptake of antigens from the gut lumen. In the current study, we have analyzed the detailed effects of TNF on the follicle-associated epithelium of porcine Peyer’s patches by applying the Ussing chamber technique. Epithelial tissue specimens of Peyer’s patches and the surrounding villus epithelium were mounted into conventional Ussing chambers and incubated with TNF for 10 h. The transepithelial resistance, representing epithelial barrier function of the tissue, was recorded. A reduction of transepithelial resistance was detected after 8 h in Peyer’s patch tissue specimens, whereas the villus epithelium was not significantly affected by TNF. Subsequent molecular analysis of TJ protein expression revealed a marked decrease of claudin-1 and -4, and an increase of claudin-2. In neighboring villus epithelium, no significant changes in the expression of TJ proteins could be shown. A strong increase of TNF receptor-2 (TNFR-2) could also be detected in Peyer’s patches, in agreement with the major role of this receptor in Peyer’s patches. Our findings were in accordance with changes detected by confocal laser scanning immunofluorescence microscopy. The regulation of TNF effects via myosin light chain kinase (MLCK) was analyzed in blocking experiments. Our detailed analysis is the first to show that TNF affects the barrier function of the follicle-associated epithelium of porcine Peyer’s patches but has no effects on the villus epithelium. These findings reveal not only the basic differences of epithelial barrier function between the two structures, but also the significance of Peyer’s patches as a primary mucosal immune defense

    Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1

    No full text
    Tumor necrosis factor alpha (TNFα) has been shown to impair the intestinal barrier, inducing and maintaining inflammatory states of the intestine. The aim of the current study was to analyze functional, molecular and regulatory effects of TNFα in a newly established non-transformed jejunal enterocyte model, namely IPEC-J2 monolayers. Incubation with 1000 U/mL TNFα induced a marked decrease in transepithelial electrical resistance (TEER), and an increase in permeability for the paracellular flux marker [3H]-D-mannitol compared to controls. Immunoblots revealed a significant decrease in tight junction (TJ) proteins occludin, claudin-1 and claudin-3. Moreover, a dose-dependent increase in the TNF receptor (TNFR)-1 was detected, explaining the exponential nature of pro-inflammatory effects, while TNFR-2 remained unchanged. Recovery experiments revealed reversible effects after the removal of the cytokine, excluding apoptosis as a reason for the observed changes. Furthermore, TNFα signaling could be inhibited by the specific myosin light chain kinase (MLCK) blocker ML-7. Results of confocal laser scanning immunofluorescence microscopy were in accordance with all quantitative changes. This study explains the self-enhancing effects of TNFα mediated by MLCK, leading to a differential regulation of TJ proteins resulting in barrier impairment in the intestinal epithelium

    HBsAg-negative/anti-HBc-positive patients treated with rituximab: prophylaxis or monitoring to prevent hepatitis B reactivation?

    No full text
    Rituximab (RTX) has been classified as a drug associated with a high risk for hepatitis B virus (HBV) reactivation in HbsAg-negative/anti-HBc-positive patients. However, data on frequency of HBV reactivation are limited especially for RTX monotherapy. Several new recommendations for screening, monitoring and prophylactic antiviral treatment have been published recently. Here, we report the real-life experience in the management and reactivation rate of HbsAg-negative/anti-HBc-positive patients treated with RTX with or without chemotherapy from a large cohort and discuss our results in the light of updated recommendations
    corecore