10 research outputs found

    Impact of Malic Enzymes on Antibiotic and Triacylglycerol Production in Streptomyces coelicolor

    No full text
    In this paper, we have characterized two malic enzymes (ME), SCO2951 and SCO5261, from Streptomyces coelicolor and analyzed their role in antibiotic and triacylglycerol (TAG) production. Biochemical studies have demonstrated that Sco2951 and Sco5261 genes encode NAD(+)- and NADP(+)-dependent malic enzymes, respectively. Single or double mutants in the ME-encoding genes show no effect on growth rate compared to the parental M145 strain. However, the single Sco2951 and the double Sco2951 Sco5261 mutants display a strong reduction in the production of the polyketide antibiotic actinorhodin; additionally, the Sco2951 Sco5261 mutant shows a decrease in stored TAGs during exponential growth. The lower production of actinorhodin in the double mutant occurs as a consequence of a decrease in the expression of actII-ORF4, the transcriptional activator of the actinorhodin gene cluster. On the other hand, the reduced TAG accumulation is not due to reduced transcript levels of fatty acid biosynthetic genes nor to changes in the amount of the precursor acetyl coenzyme A (acetyl-CoA). This mutant accumulates intermediates of the tricarboxylic acid (TCA) cycle that could alter the regulation of the actinorhodin biosynthetic pathway, suggesting that MEs are important anaplerotic enzymes that redirect C4 intermediates from the TCA cycle to maintain secondary metabolism and TAG production in Streptomyces

    Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    Get PDF
    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2′,3′,4′,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2′,3′,4′-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme
    corecore