6 research outputs found

    Unconventional order/disorder behaviour in Al–Co–Cu–Fe–Ni multi-principal element alloys after casting and annealing

    Get PDF
    The effect of Cu concentration on the order/disorder behaviour of the AlCoCuxFeNi (x = 0.6 to 3.0) multi-principal element alloys was investigated. BCC and/or FCC phases were observed in the microstructures of the alloys after casting and annealing at 1050 â—¦C followed by slow cooling. Interesting is that the alloys form ordered structures after casting and disordered structures after annealing and slow cooling, while the opposite would be expected. The ordering in the as-cast state is explained by the strong affinity of Al to transition metals, which results in the formation of supercell structures having sublattices occupied by certain elements only. Disordering after annealing has two reasons. Either the phase is composed of nearly pure element (Cu) and is disordered by default or it is composed of randomly distributed nano-segregated regions within a single phase resulting in a uniform distribution of all elements in the sublattices and therefore appearing to be macroscopically disordered. The reason for the formation of such nano-segregated areas might reside in the reduction of Gibbs free energy due to the annealing by the interplay between enthalpy and entropy

    Giant ratchet magneto-photocurrent in graphene lateral superlattices

    Get PDF
    We report on the observation of the magnetic quantum ratchet effect in graphene with a lateral dual-grating top gate (DGG) superlattice. We show that the THz ratchet current exhibits sign-alternating magneto-oscillations due to the Shubnikov–de Haas effect. The amplitude of these oscillations is greatly enhanced as compared to the ratchet effect at zero magnetic field. The direction of the current is determined by the lateral asymmetry which can be controlled by variation of gate potentials in DGG. We also study the dependence of the ratchet current on the orientation of the terahertz electric field (for linear polarization) and on the radiation helicity (for circular polarization). Notably, in the latter case, switching from right- to left-circularly polarized radiation results in an inversion of the photocurrent direction. We demonstrate that most of our observations can be well fitted by the drift-diffusion approximation based on the Boltzmann kinetic equation with the Landau quantization fully encoded in the oscillations of the density of states
    corecore