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Giant ratchet magneto-photocurrent in graphene lateral superlattices
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We report on the observation of the magnetic quantum ratchet effect in graphene with a lateral dual-grating
top gate (DGG) superlattice. We show that the THz ratchet current exhibits sign-alternating magneto-oscillations
due to the Shubnikov–de Haas effect. The amplitude of these oscillations is greatly enhanced as compared to the
ratchet effect at zero magnetic field. The direction of the current is determined by the lateral asymmetry which
can be controlled by variation of gate potentials in DGG. We also study the dependence of the ratchet current
on the orientation of the terahertz electric field (for linear polarization) and on the radiation helicity (for circular
polarization). Notably, in the latter case, switching from right- to left-circularly polarized radiation results in
an inversion of the photocurrent direction. We demonstrate that most of our observations can be well fitted by
the drift-diffusion approximation based on the Boltzmann kinetic equation with the Landau quantization fully
encoded in the oscillations of the density of states.
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I. INTRODUCTION

The discovery of graphene opened a new research direction
in condensed matter physics. The unique optical properties
of this material prompted a rapid development of photonics
and optoelectronics. These are especially important for ap-
plications in the terahertz (THz) range of frequencies; see
e.g., Refs. [1–8]. THz-radiation-induced nonlinear optical ef-
fects, including rectification of THz/infrared electromagnetic
waves, offer a new playground for many intriguingphenomena
in graphene; see, e.g., reviews [9,10]. These phenomena de-
liver graphene-specific mechanisms of photocurrent genera-
tion and provide a basis for the development of novel graphene
radiation plasmonic detectors. Such detectors are compact,
tunable by gate voltage and have already shown fast and
sensitive operation in a broad frequency band from sub-THz
to infrared, and from ambient- to cryogenic temperatures.

Among the highly promising radiation detecting mecha-
nisms is the ratchet effect, i.e., the generation of a dc electric
current responding to an ac electric field in systems with
broken P symmetry. This is one of the most general and
fundamental nonlinear phenomena in optoelectronics; for re-
views see, e.g., Refs. [11–14]. In graphene, the ratchet effect
can be obtained in monolayers with asymmetric micropatterns
[15–17], layers with built-in structure inversion asymmetry
[18] (in this case it is typically called photogalvanic effect
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[11]), short-channel devices, like field effect transistors with
asymmetric boundary conditions [1,19–25], as well as in
structures with asymmetric grating type of electrodes [26–31].
Besides their fundamental significance, the two latter types
of ratchets are extremely important for applications, since
they provide a very promising route towards fast, sensitive,
and gate-tunable detection of THz radiation at room tempera-
ture. The study of ratchet effects in graphene under different
transport regimes such as the drift-diffusion [28,29] or the
hydrodynamic one [30–32], including plasmonic effects, is a
very challenging task that has just begun to be explored.

For ratchets new physics comes into play, when an external
magnetic field is applied. It has been shown that a ratchet ef-
fect can be induced by an external magnetic field even in case
of homogeneous graphene with structure inversion asymmetry
[33]. The effect was called magnetic quantum ratchet effect
and belongs to the class of magneto-photogalvanic effects
[34–37]. It is sensitive to disorder and tunable by a gate
voltage. The observation triggered numerous theoretical pro-
posals aimed to enhance and control magnetic ratchet effects
in graphene-based systems. In particular, it was predicted that
the magnetic ratchet effect can be enormously increased under
cyclotron resonance condition and in periodic grating gate
structures.

Here we report the observation of the giant oscillating mag-
netic ratchet effect in graphene with superimposed lateral su-
perlattice, consisting of a dual-grating top gate (DGG) struc-
ture. We show particularly, that, the THz-radiation-induced
ratchet current exhibits sign-alternating magneto-oscillations
stemming from Landau quantization and having the same
period as the Shubnikov–de Haas (SdH) oscillations. The am-
plitude of the ratchet current oscillations is greatly enhanced
(at least by one order of magnitude) as compared to the ratchet
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effect at zero magnetic field previously studied in similar
structures [29]. The latter effect was shown to be caused by the
combined action of a spatially periodic in-plane potential and
the spatially modulated light due to the near-field effects of the
radiation diffraction [29]. Quantum oscillations appear also as
a function of top or back gate voltage in our DGG structures
when subjected to a constant magnetic field. Thereby, the
direction of the current is controlled by the lateral asymmetry
parameter [11,29]

� = |E(x)|2 dV (x)

dx
. (1)

Here the overline stands for the average over the ratchet pe-
riod, dV (x)/dx is the derivative of the coordinate-dependent
electrostatic potential V (x), and E(x) the distribution of the
radiation electric field being coordinate dependent due to
the near field of diffraction. We show that by changing the
individual gate voltages of the dual-grating gate structure we
can controllably change the sign of � and, thus, the direction
of the ratchet current. Furthermore, we study the response to
both linear and circularly polarized radiation and demonstrate
that the magnetic ratchet current is sensitive to the orientation
of the linear polarization with respect to the fingers of the
DGG structure as well as to the radiation helicity in the case of
circular polarization. In the latter case switching from right-
to left-circular polarization results in a phase shift of the
oscillations by π , i.e., at constant magnetic field, the current
direction reverses. The theoretical modeling of our results is
based on the experimental values of all involved parameters
and the assumption that the frequency of the incoming radi-
ation is much higher than the plasmonic frequency, so that
plasmonic effects do not contribute substantially. We demon-
strate that in strong quantizing magnetic fields all observations
can be well fitted by the drift-diffusion approximation of the
kinetic Boltzmann equation. Within this approach we find that
the photocurrent is proportional to second derivative of the
longitudinal resistance and, therefore, almost follows the SdH
resistance oscillations with a large enhancement factor arising
due to differentiating of rapidly oscillating function.

The paper is organized as follows. In Sec. II we de-
scribe the investigated samples and experimental technique.
In Sec. III we discuss the observed magnetic ratchet effects
generated by linearly and circularly polarized THz radiation.
In the following Secs. IV and V we present the theory and
compare the corresponding results with the experimental data.
Finally, in Sec. VI we summarize the results.

II. SAMPLES AND METHODS

Single-layer graphene samples encapsulated in hexagonal
boron nitride (hBN) were prepared using the van der Waals
stacking technique with Cr/Au edge contacts established by
Wang et al. [38]. After exfoliation and stacking on top of
a silicon wafer with 285nm thermal oxide, a Hall bar mesa
was etched using CHF3 based reactive ion etching, and edge
contacts were deposited by thermal evaporation. To avoid gate
leakage at the mesa sidewalls, the samples were covered with
5nm Al2O3 using atomic layer deposition. The highly doped
Si wafer serves as a uniform back gate.

FIG. 1. (a) Cross section sketch of the sample structure and
the dual-grating gate superlattice. (b) Sketch of the experimental
setup for the ratchet photocurrent measurements. (c) Sketch of the
superlattice (top view). Black dots show electric contacts to graphene
layer.

Afterwards, following the recipe of Ref. [29], a dual-
grating top gate (DGG) superlattice was fabricated on top of
the hBN/graphene/hBN flakes for the measurement of the
ratchet photocurrent. The micropatterned periodic DGG fin-
gers were made by electron beam lithography and subsequent
deposition of metal (5 nm Cr and 20 nm Au) on graphene cov-
ered by hBN and a 5 nm Al2O3 layer. A sketch of this super-
structure is shown in Figs. 1(a) and 1(c). Two gate stripes with
different widths d1 = 600 nm and d2 = 300 nm and spacings
a1 = 600 nm and a2 = 300 nm in between form the supercell
of the lattice. The cell is repeated eight times resulting in a
superlattice with a total length of 14.4 μm. All wide stripes
were connected forming multifinger top gate electrode TG1.
Similarly connected narrow stripes formed gate electrode
TG2; see yellow areas in Fig. 1(c). Independent bias voltages
(UTG1, UTG2) could be applied to wide and narrow gate stripes
making the electrostatic potential asymmetry in the graphene
tunable. The width of the whole structure is 1.4 μm yielding
the total area A = 14.4 × 1.4 μm2 = 20.2 μm2.

To measure the longitudinal resistance and the photocur-
rent normal to the DGG stripes Ohmic contacts were fab-
ricated; see Fig. 1(c). Low-temperature transport measure-
ments, which are possible in our structure in two-point config-
uration only, showed well-resolved SdH oscillations; see right
inset in Fig. 2. The oscillatory part �Rxx(B) was obtained by
subtracting a polynomial background of the form A0 + C B2 +
D B4 from the longitudinal resistance Rxx(B). The coefficients
A0, C, and D were obtained by fitting to the high field data.
Also a clear charge neutrality point was observed at UBG =
−4 V while tuning the Fermi energy by sweeping the back
gate (see left inset of Fig. 2), so that for UBG > −4 V we have
electron conductivity and for opposite inequality the hole one.
At the charge neutrality point, a slight background doping of
approximately 7 × 1010 cm−2 is present due to the top gates.
The variation of the back gate changes the charge carrier
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FIG. 2. Dependences of the longitudinal resistance Rxx on the top
gate voltage UTG1 for different back gate voltages. Left and right
insets show dependences of Rxx on back gate voltage and magnetic
field, respectively.

density in the range from a hole density of 1.5 × 1012 cm−2 to
an electron density of 1.9 × 1012 cm−2 for the UBG variation
from −30 to 30 V. We obtained an electron mobility μ =
29000 cm2/Vs and a hole mobility of μ = 15000 cm2/Vs at
T = 4.2 K. Application of a positive top gate potential shifts
the peak of the longitudinal resistance to higher negative UBG

while for high negative top gate voltages it moves to positive
UBG; see Fig. 2.

As a radiation source for our experiments a continuous
wave methanol terahertz laser with a radiation frequency of
f = 2.54 THz (h̄ω = 10.5 meV) and a radiation power P of
the order of 50 mW was used [39–41]. The radiation was
focused onto the sample using an off-axis parabolic mirror
resulting in a spot size of ≈ 1.3 mm, which yields an intensity
I ≈ 3.8 W cm−2. The radiation power coming onto the sample
is calculated after PS = I · A. The laser beam had an Gaussian
shape as checked by a pyroelectric camera [42,43]. The radi-
ation was modulated at about 75 Hz by an optical chopper in
order to use standard lock-in technique.

The optically pumped molecular laser used here emits
linearly polarized radiation. In our setup its polarization plane
is oriented along the x axis being normal to the dual-grating
gate stripes. In experiments with linearly polarized radiation,
the orientation of the radiation electric field vector E was
varied by rotation of a mesh grid polarizer mounted behind the
quarter-wave plate providing circularly polarized radiation.
The azimuth angle α is the angle between the radiation
electric field vector and the x direction [Fig. 1(c)]. The Stokes
parameters describe the degree of the linear polarization in
the basis (x, y) and the basis (x̃, ỹ) rotated by 45◦ PL and P̃L,
respectively. In this setup, they are given by

PL(α) = cos 2α, P̃L(α) = sin 2α . (2)

In experiments with elliptically polarized radiation, the radia-
tion helicity was varied by rotating the quarter-wave plate by
the angle ϕ. By that, at ϕ = 0 radiation is linearly polarized
and E is parallel to x, whereas at ϕ = 45◦ and ϕ = 135◦ the

radiation is circularly polarized with opposite helicities. In
this setup the Stokes parameters are given by [36,44]

PL(ϕ) = (cos 4ϕ + 1)/2, P̃L(ϕ) = sin 4ϕ/2,

Pcirc = sin 2ϕ ,
(3)

where Pcirc defines the degree of circular polarization. The
ratchet photocurrents were measured in a magneto-optical
cryostat at a temperature of 4.2 K as a voltage drop along a
load resistor of RL = 100 � using standard lock-in technique
and then calculated using J = U/RL. In all graphs, the pho-
tocurrent is normalized to the radiation power coming onto
the sample, PS. The values of normalized current J/Ps, which
in our experiments lie in the range from about 1 to 10 mA/W,
correspond to the measured current J ranging from 1 to 10 nA.
An external magnetic field with B up to 7 T is applied normal
to the graphene plane, as sketched in Fig. 1(b).

III. RESULTS

Before discussing our results on magnetic current we
briefly address the photocurrents detected at zero magnetic
field. In our previous work [29], in which we studied similar
structures and applying terahertz radiation with the same
parameters, we demonstrated that illumination of the DGG
superlattice on graphene results in a photocurrent exhibiting
characteristic behavior of the ratchet effect. In particular,
photocurrent direction and magnitude: (i) are sensitive to the
orientation of the radiation electric field vector E and/or
the radiation helicity, (ii) depend on the carrier charge sign
(electrons/holes), and (iii) are controlled by the lateral asym-
metry parameter �, which can be varied by applying voltages
UTG1 and UTG2 to the individual subgates. Note that switching
of the gate voltage from UTG1 > 0, UTG2 = 0 to UTG1 = 0,
UTG2 > 0 leads to a change in the sign of � and, as a conse-
quence, to a reversal of the photocurrent direction. Theoretical
analysis carried out in Ref. [29] reveals that the photocurrent
is caused by a combined action of a spatially periodic in-plane
electrostatic potential and the radiation spatially modulated
due to the near-field effects of the diffraction on the DGG
stripes. Experiments and theory of this effect present a self-
consisted detailed picture of the ratchet current formation,
therefore, in the present paper we focused on the magnetic
ratchet effect in graphene.

Applying an external magnetic field we observed that the
ratchet photocurrent drastically changes: The photocurrent
exhibits sign-alternating SdH-like magneto-oscillations with
an amplitude by more than an order of magnitude larger
than the photocurrent at zero magnetic field. A characteristic
magnetic field dependence is shown in Fig. 3 for UTG1,2 =
0, radiation electric field oriented perpendicular to the gate
stripes and back gate voltage UBG = 30 V. Note that at zero
top gate voltages, the lateral asymmetry is created by the
built-in potential caused by the metal stripes deposited on top
of graphene.

Comparing the magnetic-field dependencies of the ratchet
photocurrent and the longitudinal resistance Rxx(B) we found
out that extrema positions of the photocurrent and the SdH
oscillations coincide in weak fields. This is seen clearly in
Fig. 3, where the left vertical dashed line exemplary indicates
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FIG. 3. The photocurrent normalized to the radiation power com-
ing onto the sample, PS, and the SdH longitudinal resistance oscil-
lations �Rxx as functions of magnetic field B. The oscillatory part
�Rxx (B) was obtained by subtracting a polynomial background of
the form A0 + C B2 + D B4 from the longitudinal resistance Rxx (B).
The coefficients A0, C, and D were obtained by fitting to the high field
data. Vertical dashed lines mark some of the oscillations’ extrema
positions. The inset shows corresponding positions of transport
(black circles) and photocurrent oscillations (red dots) on a 1/B
scale as a function of the extremum’s index. Horizontal dashed lines
correspond to the vertical lines in the main plot.

extrema positions of the photocurrent and the SdH oscil-
lations. It should be noted that, whereas at low magnetic
fields the photocurrent oscillations follow Rxx(B), at high
magnetic fields a magnetic field-dependent phase shift is
present; see the right vertical dashed line in Fig. 3. These fields
are slightly higher than the magnetic field of the cyclotron
resonance BCR = ωεF/(|e|v2

0 ), where ω, εF, and v0 are the
radiation angular frequency ω = 2π f , Fermi energy, and
the Dirac velocity in graphene, respectively. Note that for the
carrier density ns ≈ 1012 cm−2, and radiation frequency f =
2.54 THz, relevant to experiment, we estimated BCR ≈ 1.8 T.

The resistance oscillations can also be obtained at fixed
magnetic field by the variation of the carrier density ns,
e.g., changing the back gate voltage (ns ∝ UBG). This kind
of oscillations we also observed in the ratchet photocurrent.
Figure 4 shows an example of such oscillations obtained for
B = 5.8 T, UTG1,2 = 0, and for linear polarization with α = 0.

Now we turn to the results obtained by variation of the lat-
eral asymmetry applying different voltages to the top subgates

FIG. 4. Dependence of the ratchet photocurrent normalized to
the radiation power coming onto the sample, PS, on the voltage
applied to the back gate. The data are obtained for linear polarization
with α = 0.

TG1 and TG2. Figure 5 shows magnetic ratchet photocurrent
oscillations as a function of top gate voltage UTG1 (UTG2)
obtained for zero biased top gate TG2 (TG1), and for linear
polarization with α = 0. At zero top gate voltages the pho-
tocurrent has the same sign and almost the same amplitude.
Sweeping voltage of one of the top gates while holding the
other one at zero bias we observed that the photocurrent
oscillates in a similar way as it is detected for the variation
of back gate voltage. However, the period of oscillations
is substantially decreased, which clearly follows from the
different separation between top or back gates and graphene
[45]. At high gate voltages corresponding to stronger lateral
asymmetry as the built-in one we observed that maxima
(minima) of the dependence on UTG1 corresponds to minima
(maxima) of the dependence on UTG2. This is illustrated in
Fig. 5 for positive and negative top gate voltages by vertical
red/black dashed lines. It reveals that the change of sign of
the lateral asymmetry parameter � results in the change of
the oscillations sign, as expected for the ratchet effect. Indeed,
e.g., for the top gate voltage combinations marked by the right
vertical dashed lines (UTG1 > 0, UTG2 = 0, red curve, and
UTG1 = 0, UTG2 > 0, black curve) the signs of the asymmetry
parameters � are opposite.

All results discussed previously were obtained for linearly
polarized radiation with the electric field E perpendicular
to the DGG stripes. Further experiments demonstrate that
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FIG. 5. Top gate voltage UTG1(UTG2) dependencies of the pho-
tocurrent normalized to the photocurrent maximum. The curves were
obtained varying UTG1(UTG2) holding zero bias at the other subgate
TG2 (TG1) and for linear polarization with α = 0. Since at high
gate voltages maxima of one dependence correspond to minima
at the other this provides an evidence for the ratchet effect being
proportional to �. This is illustrated by the vertical dashed lines at
high positive (negative) gate voltages at which the lateral asymmetry
introduced by the applied voltages is stronger than the built-in one
caused by the metal stripes deposited on top of graphene.

magneto-oscillations of the ratchet current are sensitive to the
orientation of the THz electric field vector; see Fig. 6. Our
measurements demonstrate that dependence of the current on
the direction of the linear polarization can be well fitted as

J = JAPL(α) + JBP̃L(α) + JD, (4)

where JA, JB, and JD are magnetic field-dependent fitting
parameters. Figure 6(b) exemplary shows the polarization
dependence of the total photocurrent measured at fixed mag-
netic field B = 4.9 T. The magnetic field dependence of the
coefficients JA and JD yielding dominating contributions at
low magnetic field are presented in Fig. 6(a). The curves in
Fig. 6(a) were obtained from the magnetic field dependence
of the photocurrent excited by the THz electric field vectors E
oriented perpendicular (α = 0) and parallel (α = 90◦) to the
stripes. For these angles the photocurrent contribution JBP̃L is
zero and the total current is given by J = ±JA + JD. Conse-
quently, the magnetic field dependencies of JA and JD were
calculated, respectively, as a half-difference and half-sum of
the photocurrents measured for α = 0 and 90◦. Figure 6(a)

FIG. 6. (a) Magnetic field dependences of the ratchet photocur-
rent amplitudes JA and JD normalized by the radiation power coming
onto the sample, PS. To extract JA and JD we measured magnetic
field dependencies for two angles α = 0 and 90◦, at which PL = ±1
and P̃L = 0. Then, the curves were calculated after JA = [J (α = 0) −
J (α = 90◦)]/2 and JD = [J (α = 0) + J (α = 90◦)]/2, where J (α =
0) and J (α = 90◦) are photocurrent measured for radiation electric
field vector oriented E perpendicular and parallel to the DGG stripes,
respectively. (b) Dependence of the ratchet photocurrent normalized
by the radiation coming onto the sample, PS, on the azimuth angle
α obtained for a magnetic field of B = 4.9 T. Red line shows fit
according to Eq. (4) with fitting parameters JA/PS = 17 mA/W,
JB/PS = −4.3 mA/W, and JD/PS = 2.1 mA/W. Inset shows exper-
imental setup and defines angle α describing relative orientation of
the radiation electric field vector E and DGG structure.

reveals that these ratchet current contributions have opposite
signs and close magnitudes.

Above we discussed experiments with linear polarization
rotated by λ/2 plate. Let us now discuss experimental data
obtained by using λ/4 plate which allows us to create circular
polarization. Figure 7(a) shows magneto-oscillations of the
photocurrent excited by right- (σ+) and left-handed (σ−)
circularly polarized radiation. Subtracting these two curves
we obtain the amplitude of the helicity-sensitive photocurrent
JC given by

JC = J (σ+) − J (σ−)

2
. (5)

This treatment extracts the photocurrent contribution whose
direction reverses upon switching the radiation helicity. Note
that for circularly polarized radiation the degrees of linear
polarization PL and P̃L are equal to zero and, consequently,
the magnetic ratchet effect caused by the linearly polarized
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FIG. 7. (a) Dependences of the normalized ratchet photocurrent
induced by right-handed (black curve) and left-handed (red curve)
circularly polarized radiation on the magnetic field B. (b) Magnetic
field dependence of the amplitude of the helicity-dependent ratchet
current JC normalized by the radiation power PS . JC was calculated
according to Eq. (5).

radiation vanishes. This sign-reversion has been observed di-
rectly by measuring the dependence of the photocurrent on the
phase angle ϕ defining the radiation helicity after Eq. (3). This
is shown in Fig. 8(a), where the helicity dependence of the
ratchet photocurrent is studied at B = 5.6 T, corresponding to
the maximum of JC ; see Fig. 7(b). The overall polarization

FIG. 8. (a) Dependence of the ratchet photocurrent on the radi-
ation helicity for a magnetic field of B = 5.6 T. Arrows above the
plot illustrate the polarization state. Blue line shows fit according
to Eq. (6) with fitting parameters JA/PS = −0.2 mA/W, JB/PS =
1.8 mA/W, JC/PS = 4.1 mA/W, and JD/PS = −3.8 mA/W. (b) De-
pendence of the amplitude of the helicity-dependent ratchet current
JC on the second top gate voltage at B = −5.1 T.

dependence of the photocurrent can be well fitted by

J = JAPL(ϕ) + JBP̃L(ϕ) + JCPcirc(ϕ) + JD, (6)

where JA, JB, JC , and JD are magnetic field-dependent fit-
ting parameters. Figure 8(a) demonstrates that the circular
photocurrent yields substantial contribution to the total pho-
tocurrent. Similar to the linear ratchet effect the circular
photocurrent shows clear oscillations upon variation of the
gate potential; see Fig. 8(b) for JC (UTG2).

To summarize the experimental results, we observed that
excitation of the DGG superlattice with THz radiation results
in the ratchet photocurrent showing magneto-oscillations as
well as oscillations upon variation of back or top gate volt-
ages. The oscillations are closely related to the SdH effect.
Measurements with controllable variation of the top gate
voltages and, correspondingly, the lateral asymmetry param-
eter � clearly demonstrate that the photocurrent is caused
by the ratchet effect. The photocurrent is giantly enhanced
in the presence of magnetic field. The experimental results
show a substantial contribution of both, linear and circular
magnetic ratchet effects exhibiting sign-alternating magneto-
oscillations.

IV. THEORY

In this section we generalize the theory of magnetic ratch-
ets to graphene-based systems in the SdH regime. While for
ratchets based on two-dimensional systems with a parabolic
energy spectrum the theory of magneto-oscillations was de-
veloped in Refs. [46–48] it can not be applied to graphene.
Moreover, as it has been demonstrated in Ref. [28], even at
zero magnetic field the ratchet currents are drastically differ-
ent in systems with linear and parabolic energy dispersions.

We use the Boltzmann kinetic equation approach, where
the electric current density is given by the following expres-
sion:

j = e
∑
ν,p

vp f̄p. (7)

Here vp = v0 p/p is the velocity of carriers having the momen-
tum p with v0 being the Dirac fermion velocity, ν enumerates
spin and valley-degenerate states, and f̄p is the distribution
function fp(x) averaged over the space period of DGG struc-
ture. The latter is a solution of the kinetic equation [46](

∂

∂t
+ vp,x

∂

∂x
+ F p · ∂

∂ p

)
fp(x) = St[ fp(x)]. (8)

Here St[ f ] is the elastic scattering collision integral, and the
space- and time-dependent force is given by

F p = eE(x)e−iωt + eE∗(x)eiωt + e

c
vp × B − dV

dx
x̂, (9)

where E(x) is the radiation near-field acting on two-
dimensional carriers, ω is the radiation frequency, and V (x) is
the periodic potential of the ratchet. The distribution function
is found by sequential iterations of the kinetic equation in
small electric field amplitude and the ratchet potential with the
result linear in dV/dx and quadratic in |E(x)| with the ratchet
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current proportional to the asymmetry parameter � given by
Eq. (1).

For zero magnetic field the polarization-dependent ratchet
current density in graphene is given by [28,29]

j0
x = − j0

(ωτ )2

1 + (ωτ )2

[
2(ωτ )2

1 + (ωτ )2
+ PL

]
,

j0
y = − j0

ωτ

1 + (ωτ )2

[
ωτ P̃L + (ωτ )2 − 1

1 + (ωτ )2
Pcirc

]
, (10)

where j0 is

j0 = �
e3v2

0τ

2π h̄2εFω2
, (11)

and τ is the electron elastic scattering time assumed to be
independent of the Fermi energy.

Here we calculate the ratchet current in graphene in the
SdH regime. The quantization of the energy spectrum in
strong magnetic fields is taken into account by the oscillating
density of states at the Fermi energy: g = g0(1 + δc), where
g0 = 2εF/(π h̄2v2

0 ) is the zero-field density of states with
account for spin and valley degeneracies, and the oscillating
part is given by [49,50]

δc = 2 cos (πεF/h̄ωc) exp (−π/ωcτq). (12)

Here the cyclotron frequency in graphene is ωc = eBv2
0/εF,

and τq is the quantum lifetime. As a result of the density-
of-states oscillations, the electron scattering rate also has an
oscillating part: γ = τ−1(1 + δc).

In the Appendix, we find the distribution function
f̄p(x). Note that not only the angular-independent part
of the distribution function but also its second angular
harmonics contribute to the current Eq. (7) in graphene
due to nonparabolicity of the Dirac fermion dispersion
[28]. Averaging the product vp f̄p(x) over directions of p
and then, integrating by the electron energy, taking into
account the oscillations of the density of states, we obtain
the ratchet current components in the form given in the
Appendix, Eq. (A41). In general, we obtain that the leading
contribution to the magnetic ratchet current is proportional
to ∂2δc/∂ε2

F ≈ −(2π/h̄ωc)2δc. This yields 1/B oscillations
which are in phase with the SdH oscillations. Note that
there is also a contribution proportional to the first derivative
of Rxx with respect to B ( j ∝ dRxx/dB) phase shifted
by π/2 from Rxx(B). However, this contribution is small
with respect to the quantum parameter h̄ωc/(2πεF) �
1, and, consequently, we omit it in the following
calculations.

The obtained expressions, valid for arbitrary relation be-
tween the parameters ωc, ω, and τ , are cumbersome, therefore
we give them here in two limits of low and high magnetic
fields where ωc is much higher and much smaller than ω,
respectively.

At 1/τ � ωc � ω (i.e., B � BCR) we have

jx = − j0
(ωcτ )2

(
2πεF

h̄ωc

)2

δc

×
[

1 − 5

8(ωcτ )2
PL + 1

4ωcτ
P̃L + 3ωc

2ω
Pcirc

]
, (13)

jy = j0
2(ωcτ )2

(
2πεF

h̄ωc

)2

δc

×
[

4

ωcτ
+ 1

2ωcτ
PL + 5

4(ωcτ )2
P̃L + 5

ωτ
Pcirc

]
. (14)

In the opposite limit 1/τ � ω � ωc (B � BCR) we get

jx = − j0ω2

4ω4
cτ

2

(
2πεF

h̄ωc

)2

δc

×
[
−1 − 7

2(ωcτ )2
PL + 3

ωcτ
P̃L + 3ω

2ωc
Pcirc

]
, (15)

jy = j0ω2

2ω4
cτ

2

(
2πεF

h̄ωc

)2

δc

×
[
− 1

4ωcτ
+ 3

2ωcτ
PL + 7

4(ωcτ )2
P̃L + 1

ωτ
Pcirc

]
.

(17)

Here j0 is the zero-field value of the ratchet current, Eq. (11).
Above we developed the drift-diffusion theory assuming

that the impurity scattering dominates over the electron-
electron scattering. The discussion of the hydrodynamic
regime, where electron-electron collisions are very fast, will
be presented elsewhere (previous studies on the hydrody-
namic ratchet effect [30–32,51] did not discuss magneto-
oscillations). Our preliminary estimates show that similar
results can be obtained. In particular, we find that in the
high-field limit ωc � ω at E ‖ x the ratio jx/ jy ∼ ωcτ in
accordance with Eqs. (15) and (16).

V. DISCUSSION

Now we discuss the experimental results in the view of
the developed theory. In the experiments, we probed the
photocurrent flowing in the x direction normal to the DGG
stripes, because of the device geometry. The photocurrent
obtained in Sec. IV is proportional to δc, i.e., exhibits 1/B-
periodic oscillations following SdH oscillations. Analyzing
the extrema positions of the photocurrent (see Fig. 3), we
obtained that the oscillations indeed correspond to the SdH
oscillations of Rxx(B), i.e., ratchet photocurrent J is propor-
tional to δc as expected from Eqs. (13) and (15). We note that
at high magnetic fields the experimentally observed ratchet
current oscillations have a magnetic field-dependent phase
shift, and, hence, the photocurrent is phase-shifted in respect
to the oscillations of Rxx(B). Exploring this exciting feature
requires additional experimental and theoretical studies, and
is out of scope of this paper.

From Eqs. (13) and (15) together with Eq. (12) we expect
sign-alternating oscillations of the magnetic ratchet current as
a function of Fermi energy and, consequently, gate voltages.
The oscillations periodic in gate voltage are indeed observed
at a fixed magnetic field for back- as well as top gates; see
Figs. 4 and 5, respectively. Comparing Figs. 4 and 5 we see
a substantial difference in the period of oscillations. This is
just caused by the different thicknesses (capacities) of the
corresponding insulator layers.

As a fingerprint of the ratchet effect, the magneto-
photocurrent jx ∝ j0 is proportional to the lateral asymmetry
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FIG. 9. Theoretical dependences of the magnetic ratchet pho-
tocurrents on ωcτ ∝ B. Black curve shows the polarization indepen-
dent contribution jD (JD in experiment), red curve is the PL-linear
contribution jA (JA in experiment). The photocurrents are calculated
by using Eq. (A41) at ωτ = 4.6, τq/τ = 0.3, εFτ/h̄ = 25.

parameter �; see Eqs. (1) and (10). The latter can easily be
varied by the variation of the top gate polarities and relative
amplitudes. This is indeed observed in experiment; see Fig. 5,
which shows that for large top gate voltages the sign of
oscillations is opposite for opposite signs of the parameter
�; see the black and red vertical arrows in Fig. 5. Note that
for both top gate voltages equal to zero the magnetic ratchet
currents are caused by the built-in asymmetry; see Fig. 5.

The developed theory also demonstrates that, as observed
in the experiment, the magneto-oscillations of the ratchet
current are highly sensitive to the polarization state of the
incident radiation. For linearly polarized radiation the mag-
netic ratchet current consists of the polarization-independent
current as well as of two contributions varying upon rota-
tion of the radiation polarization plane as PL = cos 2α and
P̃L = sin 2α; see Eqs. (13) and (15). These contributions are
clearly detected in experiment (see Fig. 6) and exhibit sign-
alternating magneto-oscillations. The experimental results for
the corresponding factors JD and JA, yielding dominating
contributions for wide range of magnetic fields, are presented
in Figs. 3 and 6(a). Note that the photocurrent shown in the
latter figure is obtained for α = 0 and presents the sum of JA

and JD.
The theory also describes well the dependences of the

oscillation amplitudes on the magnetic field. Figure 9 shows
calculated magnetic field dependences of the coefficients jD
and jA describing polarization-independent magnetic ratchet
photocurrent density jD, and the one driven by linearly po-
larized radiation, jAPL. Note that the coefficients jD and jA
are introduced in the same way as used in the experimen-
tal fit function Eq. (4) having current contributions JD and
JAPL(α). The overall behavior of the oscillations is the same:
an increase of magnetic field first enormously magnifies the
oscillations magnitude, which, however, decreases for further
magnetic field increase. Analytically, this nonmonotonous
behavior, which is absent in SdH oscillations, is described

by the ratio of the current oscillation amplitude j∗ introduced
according to jD = j∗ cos (πεF/h̄ωc) to that of the zero field
current j0. Then, for the polarization independent contribu-
tion, we obtain from Eq. (13)

j∗

j0
∼

(
2πεF

h̄ωc

)2 exp (−π/ωcτq)

(ωcτ )2
. (18)

A giant increase of the ratchet current when applying a
magnetic field is caused by the first factor since εF /h̄ωc � 1
so that j∗ > j0 up to ωcτ ≈ 9, whereas for ωcτ � 2.2 the
amplitude j∗ rises due to factor exp(−π/ωcτq) and j∗/ j0 �
1, a further increase in magnetic field leads to a decrease in the
ratio. This is caused by the competition of the exponential fac-
tor, saturating at ωcτq � 1, with the factor ω−4

c . This results
in a maximum of the current (see Fig. 9) clearly detected in
experiment; see Fig. 6(a). Note that a possible contribution
of the Seebeck ratchet effect in quantizing magnetic fields
[46,47] can contribute to the magnitude of the polarization-
independent current.

Similar analysis of the magnetic field dependence can also
be performed for the linear-polarization driven photocurrent
jA. From Eq. (13) follows that, alike jD, the photocurrent jA
drastically increases with the magnetic field increase, reaches
maximum and decreases at further magnetic field increase.
The only difference between the amplitudes jA and jD is
that in a high fields jA decreases faster, as ω−6

c . Figure 9
shows that, for the magnetic field relevant to experiments,
both amplitudes, jA and jD, yield comparable contributions.
This agrees with experiment; see Fig. 6(a). Furthermore, from
Eq. (13) and Fig. 9 it follows that, at low magnetic fields, the
polarization-independent component amplitude jD and that
for the current sensitive to the orientation of the radiation
electric field vector jA have opposite signs. This is in a fully
agreement with experiment; see Fig. 6(a) for B � 2.5 T. Note
that more detailed comparison of the theory and experiments
is complicated by the magnetic field-dependent phase shift
addressed above as well as by a possible contribution of
plasmonic effects [30–32,51].

Besides the photocurrent sensitive to the degree of linear
polarization, experiments show a substantial input of the
magnetic ratchet current jx ∝ Pcirc, which changes its sign
upon switching the radiation helicity. Figures 7 and 8(a) show
magneto-oscillations of this current, and its dependence on
the phase angle ϕ. The helicity-driven contribution is also ex-
pected from the developed theory; see the last terms in square
brackets on the right sides of Eqs. (13) and (15). For circularly
polarized radiation, the photocurrents proportional to PL and
P̃L vanish, and the total ratchet current for high magnetic
fields is given by jx ∝ 1 − (3ω/2ωc)Pcirc. For magnetic fields
B > 4 T and f = 2.54 THz we obtain that the amplitudes of
the helicity-dependent and polarization-independent currents
are comparable, which is in agreement with experiment; see
Fig. 8(a). Note that, in agreement with Eq. (15), these cur-
rents have opposite signs. Similarly to the magnetic ratchet
current driven by linearly polarized radiation, oscillations are
expected as a function of top gate voltage and, indeed detected
in the experiment; see Fig. 8(b).

Finally, we note that we do not aim here at studying in de-
tail the ratchet effect in the vicinity of the cyclotron resonance,
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which for a systematic study would require using radiation
of different frequencies. However, our preliminary theoretical
estimates show that the ratchet current behavior can be quite
interesting. In particular, in the vicinity of the cyclotron res-
onance the maximum difference between the drift-diffusion
regime, studied in this work, and the hydrodynamic regime is
expected. This interesting issue deserves a future publication.
Therefore, above we give theoretical formulas only for the
cases of high and low fields as compared with the resonance
field.

VI. SUMMARY

Our experiments together with the developed theory show
that terahertz radiation applied to graphene with asymmetric,
lateral superlattice and subjected to a strong magnetic field
promotes the magnetic quantum ratchet effect. The charac-
teristic feature of the magnetic field induced ratchet current
is magneto-oscillations with a magnitude much larger than
the ratchet current at zero magnetic field. This, caused by
Shubnikov–de Haas effect, enhancement of the ratchet effect
is insofar generic as it is not only observed in graphene su-
perlattices, but also in quantum well structures with parabolic
spectrum [47,48]. The amplitude and direction of the ratchet
current are controlled by the lateral asymmetry parameter �,
magnetic field strength/direction, and the radiation’s polariza-
tion state. The latter reflects magnetic ratchet current contribu-
tions driven by linearly and circularly polarized radiation. The
presented theory describes well almost all results. It cannot,
however, explain the magnetic field-dependent phase shift
of the ratchet current oscillations observed at high magnetic
fields. This striking result may be caused by contributions
from plasmonic ratchets [32], neglected here. Its understand-
ing is a future task.
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APPENDIX: DERIVATION OF THE RATCHET CURRENT

The ratchet current Eq. (15) is obtained by sequential iter-
ations of the kinetic equation (8) at two small perturbations,
namely the light amplitude E and the periodic ratchet poten-
tial V (x). The first iteration step is always account for E, but
the next steps could be different. One contribution is obtained
if the potential V is taken into account at the second stage,
and the radiation amplitude E at the last stage. We denote the
corresponding correction to the distribution function f (EV E ).

In contrast to systems with parabolic energy dispersion, the
total ratchet current is not restricted to this contribution. An
additional contribution to the ratchet current, δ j, is obtained if
the amplitude E is taken into account twice assuming V = 0,
and then, at the last stage, the periodic potential is taken into
account. The corresponding part of the distribution function is
denoted as f (EEV ). In the next two subsections we derive both
contributions to the ratchet current.

1. EVE contribution

The distribution function f (EV E ) is a solution of the kinetic
equation bilinear in E and linear in V (x) obtained by a
simultaneous account for E, V (x), and then E.

The kinetic equation for f (EV E ) has the form

ωc
∂ f (EV E )

∂ϕ
+ eE∗ · ∂ f (EV )

∂ p
= −γ f (EV E ), (A1)

where f (EV ) is the correction bilinear in E and V (x), and

γ (ε) = 1

τ
[1 + δc(ε)]. (A2)

The solution is given by

f (EV E ) = −
∑
±

τ±
c eE∗ ·

(
∂ f (EV )

∂ p

)
±

+ c.c., (A3)

where (. . .)± denotes the ±1st Fourier harmonics, and

τ±
c = 1

γ (ε) ± iωc
. (A4)

Here δc(ε) means δc given by Eq. (12) where εF is substituted
by ε.

Substituting the solution (A3) into Eq. (7), we obtain the
current density in the form

jα = −e2
∑

p

vα

∑
±

τ±
c E∗ ·

(
∂ f (EV )

∂ p

)
±

+ c.c. (A5)

This equation shows that only the even in p part of f (EV )

contributes to the photocurrent. It contains two terms, the
ϕ-independent one and the second harmonics of ϕ. For j+ =
jx + i jy we get

j+ = −e2
∑

p

v+τ−
c E∗ ·

(
∂ f (EV )

∂ p

)
−

+ (E ↔ E∗, ω → −ω). (A6)

Integrating by parts we obtain

j+ = e2
∑

p

∂ (v+τ−
c )

∂ p
· E∗ f (EV ) + (E ↔ E∗, ω → −ω).

(A7)
Calculating the gradient in the momentum space

∂ (v+τ−
c )

∂ p
· E∗ = v2

0ε

2

(
τ−

c

ε

)′
[(E∗)+ + (E∗)−e2iϕp], (A8)
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where (E∗)± = E∗
x ± iE∗

y , and the prime denotes differentiat-
ing over ε, we obtain

j+ = e2v2
0

2

∑
p

ε

(
τ−

c

ε

)′[
(E∗)+ f (EV )

0 + (E∗)− f (EV )
−2

]
+ (E ↔ E∗, ω → −ω). (A9)

Here f (EV )
0,−2 mean the angular-independent part of f (EV ) and

the part ∝ e−2iϕp .
Since the angular integration is already performed, we can

pass from summation over p to integration over energy:

j+ = e2v2
0

2

∫
dεg(ε)ε

(
τ−

c

ε

)′[
(E∗)+ f (EV )

0 + (E∗)− f (EV )
−2

]
+ (E ↔ E∗, ω → −ω), (A10)

where g(ε) is the density of states. The corrections f (EV )
0,−2 are

given by

f (EV )
0 = iev2

0

4ω

∑
±

[
− f ′

0Ex
dV

dx

(ετ±
1ω )′

ε
+ V

dEx

dx
τ±

1ω f ′′
0

]
,

f (EV )
−2 = ev2

0τ
−
2ω

4

[
− f ′

0E+
dV

dx
ε

(
τ−

1ω

ε

)′
+ V

dE+
dx

τ−
1ω f ′′

0

]
,

where

τ±
nω = 1

γ (ε) − iω ± inωc
, n = 1, 2. (A11)

These expressions at ωc = 0 pass into the corresponding
expressions from Ref. [28].

Substituting f (EV )
0,−2 into Eq. (A10), we obtain

j+ = j (0)
+ + j (−2)

+ + (E ↔ E∗, ω → −ω), (A12)

where

j (0)
+ = ie3v4

0

8ω

∑
±

∫
dεg(ε)ε

(
τ−

c

ε

)′
(E∗)+

×
[
− f ′

0Ex
dV

dx

(ετ±
1ω )′

ε
+ V

dEx

dx
τ±

1ω f ′′
0

]
, (A13)

j (−2)
+ = e3v4

0

8

∫
dεg(ε)ετ−

2ω

(
τ−

c

ε

)′
(E∗)−

×
[
− f ′

0E+
dV

dx
ε

(
τ−

1ω

ε

)′
+ V

dE+
dx

τ−
1ω f ′′

0

]
. (A14)

Averaging over the x coordinate with E0 being the near-field
amplitude yields

E0V
dE0

dx
= 1

2
V

dE2
0

dx
= −1

2
E2

0

dV

dx
≡ −1

2
�, (A15)

and integrating over ε we get

j (0)
+ = �(|ex|2 + iexe∗

y )
ie3v4

0

8ω

∑
±

{
g

(
τ−

c

εF

)′
(εFτ

±
1ω )′

− 1

2

[
gεF

(
τ−

c

εF

)′
τ±

1ω

]′}
, (A16)

j (−2)
+ = �(1 − Pcirc)

e3v4
0

8

{
gε2

Fτ
−
2ω

(
τ−

c

εF

)′(
τ−

1ω

εF

)′

− 1

2

[
gεFτ

−
2ω

(
τ−

c

εF

)′
τ−

1ω

]′}
. (A17)

Here the prime denotes differentiation over εF.
Let us analyze the terms in the curly brackets. The maximal

result comes from the second derivative (τ−
c )′′, therefore,

only the second terms in curly brackets are important. The
terms with the first derivative have much smaller ampli-
tude due to the factor h̄ωc/(2πεF) � 1. The terms ∼δ2

c are
also omitted because they have an additional small factor
exp(−π/ωcτq) � 1 and result in oscillations with double
period not present in the experiment. As a result, we obtain

j (0)
+ = −�(i|ex|2 − exe∗

y )
e3v4

0g

8
Tω(τ−

c )′′, (A18)

j (−2)
+ = −�(1 − Pcirc)

e3v4
0g

16
Qω(τ−

c )′′, (A19)

where g = 2εF/(π h̄2v2
0 ) is the zero-field density of states (spin

and valley degeneracies are taken into account), and

Tω = τ+
1ω + τ−

1ω

2ω
, Qω = τ−

2ωτ−
1ω. (A20)

Finally, from Eq. (A12) we obtain the total current

j+ = −�
e3v2

0εF

4π h̄2 (τ−
c )′′

× [Q+ + iT+(1 + PL + iP̃L) + (iT− − Q−)Pcirc].
(A21)

Here T± = (Tω ± T−ω )/2, Q± = (Qω ± Q−ω )/2.

2. EEV contribution

Here we calculate the correction δ j obtained by twice
account for E and then for V (x). The corresponding ratchet
current is given by

δ jα = e
∑

p

vα f (EEV ). (A22)

The kinetic equation for f (EEV ) has the form

ωc
∂ f (EEV )

∂ϕ
− dV

dx

∂ f (EE )

∂ px
= −γ f (EEV ), (A23)

where f (EE ) is the correction bilinear in E. The solution is
given by

f (EEV ) =
∑
±

τ±
c

dV

dx

(
∂ f (EE )

∂ px

)
±
. (A24)

Substituting the solution (A24) into Eq. (A22), we obtain
the current density in the form

δ jα = e
dV

dx

∑
p

vα

∑
±

τ±
c

(
∂ f (EE )

∂ px

)
±
. (A25)
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For δ j+ = δ jx + iδ jy we get integrating by parts

δ j+ = −e
dV

dx

∑
p

∂ (v+τ−
c )

∂ px
f (EE ). (A26)

Calculating the derivative

∂ (v+τ−
c )

∂ px
= v2

0ε

2

(
τ−

c

ε

)′
(1 + e2iϕp ), (A27)

we obtain

δ j+ = −ev2
0

2

dV

dx

∑
p

ε

(
τ−

c

ε

)′(
f (EE )
0 + f (EE )

−2

)
. (A28)

Here f (EE )
0,−2 mean the angular-independent part of f (EE ) and

the part ∝ e−2iϕp . The former is controlled by energy relax-
ation processes: f (EE )

0 ∝ τε with τε being the energy relax-
ation time. It describes the Seebeck and Nernst-Ettingshausen
ratchet effects [46]. In what follows we omit this contribution
concentrating on polarization-dependent ratchet currents.

Since the angular integration is already performed, we can
pass from summation over p to integration over energy:

δ j+ = −ev2
0

2

dV

dx

∫
dεg(ε)ε

(
τ−

c

ε

)′
f (EE )
−2 , (A29)

where g(ε) is the density of states. The correction f (EE )
−2 is

multiplied by dV/dx, therefore we find it in the quasihomo-
geneous limit:

−2iωc f (EE )
−2 + eE∗ ·

(
∂ f (E )

∂ p

)
−2

= −γ f (EE )
−2 , (A30)

where the linear in E correction to the distribution function is
found from

ωc
∂ f (E )

∂ϕ
+ eE · v f ′

0 = − f (E )

τ1ω

. (A31)

The solutions are

f (E ) = −ev0

2

∑
±

f ′
0τ

±
1ω

p±
p

E∓, (A32)

f (EE )
−2 = −τc2eE∗ ·

(
∂ f (E )

∂ p

)
−2

+ (E ↔ E∗, ω → −ω),

(A33)

where τ±
1ω is given by Eq. (A11), and

τc2 = 1

γ (ε) − 2iωc
. (A34)

The calculation is performed as follows:

E∗ ·
(

∂

∂ p
f ′
0τ

±
1ω

p±E∓
p

)
−2

= |E |2(PL + iP̃L)
v0

2
ε

(
τ−

1ω f ′
0

ε

)′
,

(A35)
which yields

f (EE )
−2 = e2τc2v

2
0

4
|E |2(PL + iP̃L)ε

[
(τ−

1ω + τ−
1,−ω ) f ′

0

ε

]′
.

(A36)
Substituting f (EE )

−2 into Eq. (A29) and averaging over the x
coordinate, we obtain

δ j+ = −e3v4
0

4
�(PL + iP̃L)

∫
dεg(ε)ε2

(
τ−

c

ε

)′
τc2

×
[

(τ−
1ω + τ−

1,−ω )

2

f ′
0

ε

]′
. (A37)

Integrating over ε we get

δ j+ = −e3v4
0

4
�(PL + iP̃L)

[
gε2

F

(
τ−

c

εF

)′
τc2

]′
τ−

1ω + τ−
1,−ω

2εF
.

(A38)

According to the same arguments as at calculation of the
EEV contribution (see the previous susbsection), the maximal
result comes from (τ−

c )′′:

δ j+ = −�
e3v2

0εF

4π h̄2 (τ−
c )′′R(PL + iP̃L). (A39)

Here

R = τc2(τ−
1ω + τ−

1,−ω ). (A40)

3. Total ratchet current

A sum of j+ from Eq. (A21) and δ j+ from Eq. (A39) yields
the total ratchet current in the form

jx + i jy = − �
e3v2

0εF

4π h̄2 (τ−
c )′′[Q+ + iT+

+ (iT+ + R)(PL + iP̃L) + (iT− − Q−)Pcirc].
(A41)

Substituting

(τ−
c )′′ = δc

(
2π

h̄ωc

)2
τ

(1 − iωcτ )2
, (A42)

and finding real and imaginary parts of Eq. (A41), we obtain
the components of the total ratchet current.

For two limiting cases of low and high magnetic fields,
passing to the limits ωτ � ωcτ � 1 and ωcτ � ωτ � 1 we
get Eqs. (13) and (15), respectively.
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