589 research outputs found

    Google Scholar, Windows Live Academic Search, and Beyond: A Study of New Tools and Changing Habits in ARL Libraries

    Get PDF
    Google Scholar and Windows Live Academic Search (WLAS) are examples of "blended" databases, a controversial new class of tools which provide free, speedy access to academic content as well as citation analysis capabilities, linkage to individual library holdings and other services. Though researchers have published dozens of theoretical and empirical studies involving these tools, none have yet described how they are actually being used in a variety of academic settings. The author sent questionnaires to 540 librarians at 108 ARL libraries to learn how they deployed Google Scholar and WLAS in reference transactions and instruction sessions. Participants were also asked speak about the ways that non-traditional databases are affecting research in academic libraries. The author finds that, while these tools provoked mixed reactions among librarians, their popularity and usefulness - especially that of Google Scholar - are forcing librarians to acknowledge the possible arrival of a new paradigm in academic research

    Animal Improvement Through Selection

    Get PDF

    Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: A systematic review

    Get PDF
    INTRODUCTION: The most appropriate tidal volume in patients without acute respiratory distress syndrome (ARDS) is controversial and has not been rigorously examined. Our objective was to determine whether a mechanical ventilation strategy using lower tidal volume is associated with a decreased incidence of progression to ARDS when compared with a higher tidal volume strategy. METHODS: A systematic search of MEDLINE, EMBASE, CINAHL, the Cochrane Library, conference proceedings, and clinical trial registration was performed with a comprehensive strategy. Studies providing information on mechanically ventilated patients without ARDS at the time of initiation of mechanical ventilation, and in which tidal volume was independently studied as a predictor variable for outcome, were included. The primary outcome was progression to ARDS. RESULTS: The search yielded 1,704 studies, of which 13 were included in the final analysis. One randomized controlled trial was found; the remaining 12 studies were observational. The patient cohorts were significantly heterogeneous in composition and baseline risk for developing ARDS; therefore, a meta-analysis of the data was not performed. The majority of the studies (n = 8) showed a decrease in progression to ARDS with a lower tidal volume strategy. ARDS developed early in the course of illness (5 hours to 3.7 days). The development of ARDS was associated with increased mortality, lengths of stay, mechanical ventilation duration, and nonpulmonary organ failure. CONCLUSIONS: In mechanically ventilated patients without ARDS at the time of endotracheal intubation, the majority of data favors lower tidal volume to reduce progression to ARDS. However, due to significant heterogeneity in the data, no definitive recommendations can be made. Further randomized controlled trials examining the role of lower tidal volumes in patients without ARDS, controlling for ARDS risk, are needed. 2013 Fuller et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: A case-control study

    Get PDF
    INTRODUCTION: Early treatment of sepsis improves survival, but early diagnosis of hospital-acquired sepsis, especially in critically ill patients, is challenging. Evidence suggests that subtle changes in body temperature patterns may be an early indicator of sepsis, but data is limited. The aim of this study was to examine whether abnormal body temperature patterns, as identified by visual examination, could predict the subsequent diagnosis of sepsis in afebrile critically ill patients. METHODS: Retrospective case-control study of 32 septic and 29 non-septic patients in an adult medical and surgical ICU. Temperature curves for the period starting 72 hours and ending 8 hours prior to the clinical suspicion of sepsis (for septic patients) and for the 72-hour period prior to discharge from the ICU (for non-septic patients) were rated as normal or abnormal by seven blinded physicians. Multivariable logistic regression was used to compare groups in regard to maximum temperature, minimum temperature, greatest change in temperature in any 24-hour period, and whether the majority of evaluators rated the curve to be abnormal. RESULTS: Baseline characteristics of the groups were similar except the septic group had more trauma patients (31.3% vs. 6.9%, p = .02) and more patients requiring mechanical ventilation (75.0% vs. 41.4%, p = .008). Multivariable logistic regression to control for baseline differences demonstrated that septic patients had significantly larger temperature deviations in any 24-hour period compared to control patients (1.5°C vs. 1.1°C, p = .02). An abnormal temperature pattern was noted by a majority of the evaluators in 22 (68.8%) septic patients and 7 (24.1%) control patients (adjusted OR 4.43, p = .017). This resulted in a sensitivity of 0.69 (95% CI [confidence interval] 0.50, 0.83) and specificity of 0.76 (95% CI 0.56, 0.89) of abnormal temperature curves to predict sepsis. The median time from the temperature plot to the first culture was 9.40 hours (IQR [inter-quartile range] 8.00, 18.20) and to the first dose of antibiotics was 16.90 hours (IQR 8.35, 34.20). CONCLUSIONS: Abnormal body temperature curves were predictive of the diagnosis of sepsis in afebrile critically ill patients. Analysis of temperature patterns, rather than absolute values, may facilitate decreased time to antimicrobial therapy

    Core warming of coronavirus disease 2019 (COVID-19) patients undergoing mechanical ventilation-A protocol for a randomized controlled pilot study

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, is spreading rapidly across the globe, with little proven effective therapy. Fever is seen in most cases of COVID-19, at least at the initial stages of illness. Although fever is typically treated (with antipyretics or directly with ice or other mechanical means), increasing data suggest that fever is a protective adaptive response that facilitates recovery from infectious illness. OBJECTIVE: To describe a randomized controlled pilot study of core warming patients with COVID-19 undergoing mechanical ventilation. METHODS: This prospective single-site randomized controlled pilot study will enroll 20 patients undergoing mechanical ventilation for respiratory failure due to COVID-19. Patients will be randomized 1:1 to standard-of-care or to receive core warming via an esophageal heat exchanger commonly utilized in critical care and surgical patients. The primary outcome is patient viral load measured by lower respiratory tract sample. Secondary outcomes include severity of acute respiratory distress syndrome (as measured by PaO2/FiO2 ratio) 24, 48, and 72 hours after initiation of treatment, hospital and intensive care unit length of stay, duration of mechanical ventilation, and 30-day mortality. RESULTS: Resulting data will provide effect size estimates to guide a definitive multi-center randomized clinical trial. ClinicalTrials.gov registration number: NCT04426344. CONCLUSIONS: With growing data to support clinical benefits of elevated temperature in infectious illness, this study will provide data to guide further understanding of the role of active temperature management in COVID-19 treatment and provide effect size estimates to power larger studies

    1,2,6-thiadiazinones as novel narrow spectrum calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) inhibitors

    Get PDF
    We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors

    Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion

    Full text link
    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.Comment: accepted for publication in Physical Review Letter
    • …
    corecore