17 research outputs found
Growth response to 4-hydroxy-l-threonine of Escherichia coli mutants blocked in vitamin B6 biosynthesis
AbstractMutants of Escherichia coli (pdx B and pdx C) which are blocked in the biosynthesis of pyridoxol (vitamin B6) showed a growth response to 4-hydroxy-l-threonine. This observation constitutes the first direct evidence in support of the view that 4-hydroxy-l-threonine is implicated in the biosynthesis of vitamin B6. 1-Aminopropan-2,3-diol, the decarboxylation product of 4-hydroxy-l-threonine, does not support the growth of these mutants. Deuterium from deuterium-labelled 1-aminopropan-2,3-diol was not incorporated into pyridoxol
The experimental power of FR900359 to study Gq-regulated biological processes.
Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq
Deconvolution of complex G protein–coupled receptor signaling in live cells using dynamic mass redistribution measurements
Label-free biosensor technology based on dynamic mass redistribution (DMR) of cellular constituents promises to translate GPCR signaling into complex optical 'fingerprints' in real time in living cells. Here we present a strategy to map cellular mechanisms that define label-free responses, and we compare DMR technology with traditional second-messenger assays that are currently the state of the art in GPCR drug discovery. The holistic nature of DMR measurements enabled us to (i) probe GPCR functionality along all four G-protein signaling pathways, something presently beyond reach of most other assay platforms; (ii) dissect complex GPCR signaling patterns even in primary human cells with unprecedented accuracy; (iii) define heterotrimeric G proteins as triggers for the complex optical fingerprints; and (iv) disclose previously undetected features of GPCR behavior. Our results suggest that DMR technology will have a substantial impact on systems biology and systems pharmacology as well as for the discovery of drugs with novel mechanisms
The Key Role of Peltate Glandular Trichomes in Symbiota Comprising Clavicipitaceous Fungi of the Genus Periglandula and Their Host Plants
Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant
Analysis of the Arabidopsis rsr4-1/pdx1-3 Mutant Reveals the Critical Function of the PDX1 Protein Family in Metabolism, Development, and Vitamin B6 Biosynthesis[W]
Vitamin B6 represents a highly important group of compounds ubiquitous in all living organisms. It has been demonstrated to alleviate oxidative stress and in its phosphorylated form participates as a cofactor in >100 biochemical reactions. By means of a genetic approach, we have identified a novel mutant,
rsr4-1
(for
reduced sugar response
), with aberrant root and leaf growth that requires supplementation of vitamin B6 for normal development. Cloning of the mutated gene revealed that
rsr4-1
carries a point mutation in a member of the PDX1/SOR1/SNZ (for Pyridoxine biosynthesis protein 1/Singlet oxygen resistant 1/Snooze) family that leads to reduced vitamin B6 content. Consequently, metabolism is broadly altered, mainly affecting amino acid, raffinose, and shikimate contents and trichloroacetic acid cycle constituents. Yeast two-hybrid and pull-down analyses showed that
Arabidopsis thaliana
PDX1 proteins can form oligomers. Interestingly, the mutant form of PDX1 has severely reduced capability to oligomerize, potentially suggesting that oligomerization is important for function. In summary, our results demonstrate the critical function of the PDX1 protein family for metabolism, whole-plant development, and vitamin B6 biosynthesis in higher plants