8 research outputs found

    Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing

    Get PDF
    Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life

    The Different Roles of Entropy and Solubility in High Entropy Alloy Stability

    No full text
    Multiprincipal element high entropy alloys stabilized as a single alloy phase represent a new material system with promising properties, such as high corrosion and creep resistance, sluggish diffusion, and high temperature tensile strength. However, the mechanism of stabilization to form single phase alloys is controversial. Early studies hypothesized that a large entropy of mixing was responsible for stabilizing the single phase; more recent work has proposed that the single-phase solid solution is the result of mutual solubility of the principal elements. Here, we demonstrate the first self-consistent study of the relative importance of these two proposed mechanisms. In situ high-throughput synchrotron diffraction studies were used to monitor the stability of the single phase alloy in thin-film (Al<sub>1–<i>x</i>–<i>y</i></sub>Cu<sub><i>x</i></sub>Mo<sub><i>y</i></sub>)­FeNiTiVZr composition spread samples. Our results indicate that a metastable solid solution can be captured via the rapid quenching typical of physical vapor deposition processes, but upon annealing the solid-solution phase stability is primarily governed by mutual miscibility

    Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing

    No full text
    Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.</p

    Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing

    No full text
    Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.This article is published as Hou, Huilong, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cisse, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, and Ichiro Takeuchi. "Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing." Science 366, no. 6469 (2019): 1116-1121. DOI: 10.1126/science.aax7616. Posted with permission.</p
    corecore