824 research outputs found

    The Sudbury Structure (Ontario, Canada) and Vredefort Structure (South Africa): A comparison

    Get PDF
    Both the Sudbury Structure (SS) and the Witwatersrand Basin surrounding the Vredefort Structure (VS) host some of the most important base and precious metal deposits on earth. In both structures Precambrian igneous, sedimentary and volcanic rocks were affected by the structure forming process, either meteorite impact or endogenic explosion, or as some VS workers propose, by high strain tectonics. Besides these general features there are some geological and geophysical characteristics that are strikingly similar in both structures. There are, however, some obvious differences. Directly related to the structure forming processes are breccias in the footwall rocks of both structures. Pseudotachylite breccias occurring in both structures display great similarities. Chemical and physical characteristics of the pseudotachylites are similar in both structures. Both structures are characterized by overturned collar rocks, not evident everywhere around the SS. The VS is rimmed by an up or overturned collar of sediments and volcanics of the Witwatersrand, Ventersdorp and Transvaal Supergroups. Drilling information proved that the strata of the Witwatersrand Supergroup in the south of the VS are lying horizontally. Shockmetamorphic features such as planar microdeformations in rock forming minerals and shatter cones are present in both structures in the footwall rocks and in the SS also in the breccias of the OF. Both structures have large geophysical anomalies associated with them. In both structures the anomalies were interpreted as being caused by mafic-ultramafic complexes underlying the structures

    Incipient Melt Formation and Devitrification at the Wanapitei Impact Structure, Ontario, Canada

    Get PDF
    The Wanapitei impact structure is approximately 8 km in diameter and lies within Wanapitei Lake, approximately 34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of approximately 50-60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 C and 800 C

    Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    Get PDF
    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that they are genetically related. Our chemical results allow interpretation of the entire igneous complex as a differentiated impact melt. However, they are also consistent with the granophyre alone being the impact melt and the nofite and quartz gabbro beneath it representing an impact-triggered magmatic body. This interpretation is preferred, as it is consistent with a number of field observations. A re-evaluation and extension of structural field studies and of geochemical data, as well as a systematic study of the contact relationships of the various igneous phases of the igneous complex, are needed to establish a Sudbury impact model consistent with all data and observation

    Sudbury project (University of Muenster-Ontario Geological Survey): Field studies 1984-1989 - summary of results

    Get PDF
    In cooperation between the Ontario Geological Survey and the Institute of Geology and Institute of Planetology, geological, petrological, and geochemical studies were carried out on impact-related phenomena of the Sudbury structure during the last decade. The main results of the field studies are briefly reviewed. Footwall rocks, sublayer, and lower sections of the Sudbury Igneous Complex (SIC) were mainly mapped and sampled in the northern (Levack Township) and western (Trillabelle and Sultana Properties) parts of the north range. Within these mapping areas Sudbury Breccias (SB) and Footwall Breccias (FB) were studied; SB were also investigated along extended profiles beyond the north and south ranges up to 55 km from the SIC. The Onaping Formation (OF) and the upper section of the SIC were studied both in the north range (Morgan and Dowling Townships) and in the southern east range (Capreol and McLennan Townships)

    Clastic Breccias at the Slates Islands Complex Impact Structure, Northern Lake Superior

    Get PDF
    About 150 impact craters are known on Earth and each year several structures are added to this number. The general geology of the Slate Islands archipelago has been described by Sage (1991) and a short summary based on Sage's work is given in Dressler et al. (1995). The reader is referred to these publications for information on the bedrock geology of the island group. Early studies on the Slate Islands impact structure include: Halls and Grieve (1976), Grieve and Robertson (1976) and Stesky and Halls (1983). In this report, we provide a summary of the impact process as presently understood. We also present some of the results of our laboratory investigations conducted in 1995 and 1996. We describe in some detail the various clastic breccias encountered on the islands during our 1994 and 1995 field work and relate them to the various phases of the impact process. A more encompassing treatise on the breccias has been submitted for publication. (Dressler and Sharpton 1996)

    New Observations at the Slate Islands Impact Structure, Lake Superior

    Get PDF
    Slate Islands, a group of 2 large and several small islands, is located in northern Lake Superior, approximately 10 km south of Terrace Bay. Shatter cones, breccias and shock metamorphic features provide evidence that the Slate Islands Structure was formed as a result of asteroid or comet impact. Most of the island group is believed to represent the central uplift of a complex impact crater. The structure possibly has a diameter of about 32 km. For Sage (1978, 1991) shock metamorphic features, shatter cones and pervasive rock brecciation are the results of diatreme activity. The present investigations represent the second year of a co-operative study of the Lunar and Planetary Institute, Houston, Texas and the Field Services Section (Northwest) of the Ontario Geological Survey. The objective of this investigation is to come to a better understanding of the formation of mid-size impact structures on Earth and the planets of the solar system. Impact processes played a fundamental role in the formation of the planets and the evolution of life on Earth. Meteorite and comet impacts are not a phenomenon of the past. Last year, more than 20 pieces of the Shoemaker-Levy 9 impacted on Jupiter and the Tunguska comet impacted in Siberia in the early years of this century. The study of impact processes is a relatively young part of geoscience and much is still to be learnt by detailed field and laboratory investigations. The State Islands Structure has been selected for the present detailed investigations because of the excellent shoreline outcrops of rock units related to the impact. The structure is a complex impact crater that has been eroded so that important lithological and structural elements are exposed. We know of no other mid-size terrestrial impact structure with equal or better exposures. In this publication we present preliminary results of our 1994 and 1995 field and laboratory investigations. We have tentatively identified a few impact melt and a considerable number of suevite occurrences

    Sudbury project (University of Muenster-Ontario Geological Survey): Summary of results - an updated impact model

    Get PDF
    In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion
    • …
    corecore