50 research outputs found
Dietary Supplements and Sports Performance: Minerals
Minerals are essential for a wide variety of metabolic and physiologic processes in the human body. Some of the physiologic roles of minerals important to athletes are their involvement in: muscle contraction, normal hearth rhythm, nerve impulse conduction, oxygen transport, oxidative phosphorylation, enzyme activation, immune functions, antioxidant activity, bone health, and acid-base balance of the blood. The two major classes of minerals are the macrominerals and the trace elements. The scope of this article will focus on the ergogenic theory and the efficacy of such mineral supplementation
Molecule-Electrode Interface Energetics in Molecular Junction: a Transition Voltage Spectroscopy Study
We assess the performances of the transition voltage spectroscopy (TVS)
method to determine the energies of the molecular orbitals involved in the
electronic transport though molecular junctions. A large number of various
molecular junctions made with alkyl chains but with different chemical
structure of the electrode-molecule interfaces are studied. In the case of
molecular junctions with clean, unoxidized electrode-molecule interfaces, i.e.
alkylthiols and alkenes directly grafted on Au and hydrogenated Si,
respectively, we measure transition voltages in the range 0.9 - 1.4 V. We
conclude that the TVS method allows estimating the onset of the tail of the
LUMO density of states, at energy located 1.0 - 1.2 eV above the electrode
Fermi energy. For oxidized interfaces (e.g. the same monolayer measured with Hg
or eGaIn drops, or monolayers formed on a slightly oxidized silicon substrate),
lower transition voltages (0.1 - 0.6 V) are systematically measured. These
values are explained by the presence of oxide-related density of states at
energies lower than the HOMO-LUMO of the molecules. As such, the TVS method is
a useful technique to assess the quality of the molecule-electrode interfaces
in molecular junctions.Comment: Accepted for publication in J. Phys. Chem C. One pdf file including
manuscript, figures and supporting informatio
Firm insoles effectively reduce hemolysis in runners during long distance running - a comparative study
<p>Abstract</p> <p>Background</p> <p>Shock absorbing insoles are effective in reducing the magnitude and rate of loading of peak impact forces generated at foot strike during running, whereas the foot impact force during running has been considered to be an important cause of intravascular hemolysis in long distance runners. Objective of this study was to evaluate the intravascular hemolysis during running and compare the effect of two different types of insoles (Soft and Firm) on hemolysis.</p> <p>Methods</p> <p>Twenty male long and middle distance runners volunteered to participate in this study. We selected two insoles (Soft and Firm) according to their hardness level (SHORE 'A' scale). Participants were randomly assigned to the soft insole (group 1) and firm insole (group 2) group with ten athletes in each group. Each athlete completed one hour of running at the calculated target heart rate (60-70%). Venous blood samples were collected before and immediately after running. We measured unconjucated bilirubin (mg/dl), lactate dehydrogenase (Ό/ml), hemoglobin (g/l) and serum ferritin (ng/ml) as indicators of hemolysis.</p> <p>Results</p> <p>Our study revealed a significant increase in the mean values of unconjucated bilirubin (P < 0.05) while running with soft insoles indicating the occurrence of hemolysis in this group of athletes. Graphical analysis revealed an inverse relationship between hardness of insoles and hemolysis for the observed values.</p> <p>Conclusion</p> <p>Our results indicate that intravascular hemolysis occurs in athletes during long distance running and we conclude that addition of firm insoles effectively reduces the amount of hemolysis in runners compared to soft insoles.</p
The Worksite Health Promotion Capacity Instrument (WHPCI): development, validation and approaches for determining companies' levels of health promotion capacity
<p>Abstract</p> <p>Background</p> <p>The Worksite Health Promotion Capacity Instrument (WHPCI) was developed to assess two key factors for effective worksite health promotion: collective willingness and the systematic implementation of health promotion activities in companies. This study evaluates the diagnostic qualities of the WHPCI based on its subscales Health Promotion Willingness and Health Promotion Management, which can be used to place companies into four different categories based on their level of health promotion capacity.</p> <p>Methods</p> <p>Psychometric evaluation was conducted using exploratory factor and reliability analyses with data taken from a random sample of managers from n = 522 German information and communication technology (ICT) companies. Receiver operating characteristic (ROC) analyses were conducted to determine further diagnostic qualities of the instrument and to establish the cut-off scores used to determine each company's level of health promotion capacity.</p> <p>Results</p> <p>The instrument's subscales, Health Promotion Willingness and Health Promotion Management, are based on one-dimensional constructs, each with very good reliability (Cronbach's alpha = 0.83/0.91). ROC analyses demonstrated satisfactory diagnostic accuracy with an area under the curve (AUC) of 0.76 (SE = 0.021; 95% CI 0.72-0.80) for the Health Promotion Willingness scale and 0.81 (SE = 0.021; 95% CI 0.77-0.86) for the Health Promotion Management scale. A cut-off score with good sensitivity (71%/76%) and specificity (69%/75%) was determined for each scale. Both scales were found to have good predictive power and exhibited good efficiency.</p> <p>Conclusions</p> <p>Our findings indicate preliminary evidence for the validity and reliability of both subscales of the WHPCI. The goodness of each cut-off score suggests that the scales are appropriate for determining companies' levels of health promotion capacity. Support in implementing (systematic) worksite health promotion can then be tailored to each company's needs based on their current capacity level.</p
Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers
Saturation diving is an occupation that involves prolonged exposure to a confined, hyperoxic, hyperbaric environment. The unique and extreme environment is thought to result in disruption to physiological and metabolic homeostasis, which may impact human health and performance. Appropriate nutritional intake has the potential to alleviate and/or support many of these physiological and metabolic concerns, whilst enhancing health and performance in saturation divers. Therefore, the purpose of this review is to identify the physiological and practical challenges of saturation diving and consequently provide evidence-based nutritional recommendations for saturation divers to promote health and performance within this challenging environment. Saturation diving has a high-energy demand, with an energy intake of between 44 and 52 kcal/kg body mass per day recommended, dependent on intensity and duration of underwater activity. The macronutrient composition of dietary intake is in accordance with the current Institute of Medicine guidelines at 45-65 % and 20-35 % of total energy intake for carbohydrate and fat intake, respectively. A minimum daily protein intake of 1.3 g/kg body mass is recommended to facilitate body composition maintenance. Macronutrient intake between individuals should, however, be dictated by personal preference to support the attainment of an energy balance. A varied diet high in fruit and vegetables is highly recommended for the provision of sufficient micronutrients to support physiological processes, such as vitamin B12 and folate intake to facilitate red blood cell production. Antioxidants, such as vitamin C and E, are also recommended to reduce oxidised molecules, e.g. free radicals, whilst selenium and zinc intake may be beneficial to reinforce endogenous antioxidant reserves. In addition, tailored hydration and carbohydrate fueling strategies for underwater work are also advised