2,755 research outputs found
Comparison of Power Dependence of Microwave Surface Resistance of Unpatterned and Patterned YBCO Thin Film
The effect of the patterning process on the nonlinearity of the microwave
surface resistance of YBCO thin films is investigated. With the use of a
sapphire dielectric resonator and a stripline resonator, the microwave of
YBCO thin films was measured before and after the patterning process, as a
function of temperature and the rf peak magnetic field in the film. The
microwave loss was also modeled, assuming a dependence of
on current density . Experimental and modeled results
show that the patterning has no observable effect on the microwave residual
or on the power dependence of .Comment: Submitted to IEEE Trans. MT
Energy Gaps in Graphene Nanoribbons
Based on a first-principles approach, we present scaling rules for the band
gaps of graphene nanoribbons (GNRs) as a function of their widths. The GNRs
considered have either armchair or zigzag shaped edges on both sides with
hydrogen passivation. Both varieties of ribbons are shown to have band gaps.
This differs from the results of simple tight-binding calculations or solutions
of the Dirac's equation based on them. Our {\it ab initio} calculations show
that the origin of energy gaps for GNRs with armchair shaped edges arises from
both quantum confinement and the crucial effect of the edges. For GNRs with
zigzag shaped edges, gaps appear because of a staggered sublattice potential on
the hexagonal lattice due to edge magnetization. The rich gap structure for
ribbons with armchair shaped edges is further obtained analytically including
edge effects. These results reproduce our {\it ab initio} calculation results
very well
Geometrical and electronic structures of the (5, 3) single-walled gold nanotube from first-principles calculations
The geometrical and electronic structures of the 4 {\AA} diameter perfect and
deformed (5, 3) single-walled gold nanotube (SWGT) have been studied based upon
the density-functional theory in the local-density approximation (LDA). The
calculated relaxed geometries show clearly significant deviations from those of
the ideally rolled triangular gold sheet. It is found that the different
strains have different effects on the electronic structures and density of
states of the SWGTs. And the small shear strain can reduce the binding energy
per gold atom of the deformed SWGT, which is consistent with the experimentally
observed result. Finally, we found the finite SWGT can show the
metal-semiconductor transition.Comment: 11 pages, 4 figure
Anomalous skin effect in a magnetic field
Journal ArticleA classical and quantum mechanical derivation of cyclotron resonance in metals is given. The classical result differs slightly from that obtained by Azbel and Kaner. The quantum derivation yields the same result as the classical calculation except that in the limit of low quantum numbers or high magnetic fields a de Haasvan Alphen type of variation of the surface impedance occurs rather than the resonance behavior
Large oscillating non-local voltage in multi-terminal single wall carbon nanotube devices
We report on the observation of a non-local voltage in a ballistic
one-dimensional conductor, realized by a single-wall carbon nanotube with four
contacts. The contacts divide the tube into three quantum dots which we control
by the back-gate voltage . We measure a large \emph{oscillating} non-local
voltage as a function of with zero mean. Though a classical
resistor model can account for a non-local voltage including change of sign, it
fails to describe the magnitude properly. The large amplitude of is
due to quantum interference effects and can be understood within the
scattering-approach of electron transport
Group theory for structural analysis and lattice vibrations in phosphorene systems
Group theory analysis for two-dimensional elemental systems related to
phosphorene is presented, including (i) graphene, silicene, germanene and
stanene, (ii) dependence on the number of layers and (iii) two stacking
arrangements. Departing from the most symmetric graphene space
group, the structures are found to have a group-subgroup relation, and analysis
of the irreducible representations of their lattice vibrations makes it
possible to distinguish between the different allotropes. The analysis can be
used to study the effect of strain, to understand structural phase transitions,
to characterize the number of layers, crystallographic orientation and
nonlinear phenomena.Comment: 24 pages, 3 figure
Selection Rules for One- and Two-Photon Absorption by Excitons in Carbon Nanotubes
Recent optical absorption/emission experiments showed that the lower energy
optical transitions in carbon nanotubes are excitonic in nature, as predicted
by theory. These experiments were based on the symmetry aspects of free
electron-hole states and bound excitonic states. The present work shows,
however, that group theory does not predict the selection rules needed to
explain the two photon experiments. We obtain the symmetries and selection
rules for the optical transitions of excitons in single-wall carbon nanotubes
within the approach of the group of the wavevector, thus providing important
information for the interpretation of theoretical and experimental optical
spectra of these materials.Comment: 4 pages, 1 figure, 1 tabl
- …