44 research outputs found

    Integrative Analysis of Low- and High-Resolution eQTL

    Get PDF
    The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains (Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on ‘real life’ data as opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) ‘master regulators’, but actually by a set of polymorphic genes specific to the central nervous system

    Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    Get PDF
    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes

    Autophagy: Regulation and role in disease

    Full text link

    Nicotinic acetylcholine receptor selectivity and inhibitory activity on mouse medial habenula by coronaridine congeners

    No full text
    The inhibitory activity of coronaridine congeners on human (h) α4β2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca2+ influx assays, whereas their effects on mouse medial habenula (MHb) neurons is determined by patch-clamp recordings. The Ca2+ influx results clearly establish that coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to hα4β2 and hα7 subtypes, and with the following potency sequence, for hα4β2: (±)-18-methoxycoronaridine [(±)-18-MC] > (+)-catharanthine > (±)-18-methylaminocoronaridine [(±)-18-MAC] ~ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine > (±)-18-MC > (±)-18-HC > (±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27 ± 4 µM) and (±)-18-MC (28 ± 6 µM) on MHb neurons was lower than that observed on hα3β4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3β4* AChRs. In addition, the interaction of bupropion with (-)-ibogaine sites on hα3β4 AChRs is tested by [3H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3β4 AChRs with 2-fold higher affinity than resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3β4 AChRs with comparatively higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. These compounds also inhibit α3β4*AChRs expressed in MHb neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities

    Selectivity of (±)-citalopram at nicotinic acetylcholine receptors and different inhibitory mechanisms between habenular α3β4* and α9α10 subtypes

    No full text
    The inhibitory activity of (±)-citalopram on human (h) α3β4, α4β2, and α7 nicotinic acetylcholine receptors (AChRs) was determined by Ca2+ influx assays, whereas its effect on rat α9α10 and mouse habenular α3β4* AChRs by electrophysiological recordings. The Ca2+ influx results clearly establish that (±)-citalopram inhibits hα3β4 AChRs (5.1 ± 1.3) with higher potency (IC50's in µM) than that for hα7 (18.8 ± 1.1) and hα4β2 (19.1 ± 4.2) AChRs. This is in agreement with the [3H]imipramine competition binding results indicating that (±)-citalopram binds to imipramine sites at desensitized hα3β4 with >2-fold higher affinity than that for hα4β2. The electrophysiological results indicate that (±)-citalopram competitively inhibits rα9α10 AChRs (7.5 ± 0.9) in a voltage-independent manner, whereas it inhibits a homogeneous population of α3β4* AChRs at MHb (VI) neurons (7.6 ± 1.0) in a voltage-dependent manner. The results indicating that citalopram overlaps the imipramine luminal site and inhibits α3β4* AChRs in a voltage-dependent manner, suggest an ion channel blocking mechanism. Both results were in agreement with the conclusions of automatic molecular docking and molecular dynamics experiments. In conclusion, (±)-citalopram inhibits α3β4 and α9α10 AChRs with higher potency compared to other AChRs but by different mechanisms. (±)-Citalopram also inhibits α3β4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets related to their anti-addictive activities

    R7BP Complexes With RGS9-2 and RGS7 in the Striatum Differentially Control Motor Learning and Locomotor Responses to Cocaine

    No full text
    In the striatum, signaling through G protein-coupled dopamine receptors mediates motor and reward behavior, and underlies the effects of addictive drugs. The extent of receptor responses is determined by RGS9-2/Gβ5 complexes, a striatally enriched regulator that limits the lifetime of activated G proteins. Recent studies suggest that the function of RGS9-2/Gβ5 is controlled by the association with an additional subunit, R7BP, making elucidation of its contribution to striatal signaling essential for understanding molecular mechanisms of behaviors mediated by the striatum. In this study, we report that elimination of R7BP in mice results in motor coordination deficits and greater locomotor response to morphine administration, consistent with the essential role of R7BP in maintaining RGS9-2 expression in the striatum. However, in contrast to previously reported observations with RGS9-2 knockouts, mice lacking R7BP do not show higher sensitivity to locomotor-stimulating effects of cocaine. Using a striatum-specific knockdown approach, we show that the sensitivity of motor stimulation to cocaine is instead dependent on RGS7, whose complex formation with R7BP is dictated by RGS9-2 expression. These results indicate that dopamine signaling in the striatum is controlled by concerted interplay between two RGS proteins, RGS7 and RGS9-2, which are balanced by a common subunit, R7BP

    The Necessity of α4* Nicotinic Receptors in Nicotine-Driven Behaviors: Dissociation Between Reinforcing and Motor Effects of Nicotine

    No full text
    Here we utilize a mouse line with a targeted deletion of the α4 subunit (α4−/− mice), to investigate the role of α4* nAChRs in reinforcing and locomotor effects of nicotine. Within a conditioned place preference paradigm, both α4−/− mice and wild-type (WT) littermates showed a similar place preference to nicotine (0.5 mg/kg i.p.) conditioning. When assessed for operant intravenous self-administration of nicotine (0.05 mg/kg/infusion), α4−/− mice did not differ from their WT littermates in self-administration behavior. To further examine a modulatory role for α4* nAChRs in the reinforcing effects of nicotine, a transgenic mouse with a point mutation of the α4 subunit (α4-S248F) that renders increased sensitivity to low dose nicotine, was assessed for nicotine self-administration over a range of doses. At higher doses examined (0.05 and 0.07 mg/kg/infusion) there was no difference in intravenous nicotine self-administration; however, when mice were offered a lower dose of nicotine (0.03 mg/kg/infusion), α4-S248F mice showed greater nicotine intake than controls. Acute administration of 0.5 mg/kg nicotine caused significant locomotor depression in WT mice but α4−/− mice instead showed significant hyperactivity. Following chronic, intermittent administration of this dose of nicotine only WT mice displayed significant tolerance. Analogous experiments utilizing administration of the nicotinic antagonist mecamylamine in WT mice confirmed a dissociation between the putative nicotinic receptor subtypes required for mediating psychomotor and reinforcing effects of nicotine. These data demonstrate a necessary role for α4* nAChRs in the locomotor depressant effect of nicotine but not the reinforcing effects that support ongoing self-administration of nicotine
    corecore