18 research outputs found

    Deconvolution of Long-Pulse Lidar Profiles

    Get PDF

    Chapter Lidar Mapping of Near-Surface Aerosol Fields

    Get PDF
    Near-surface atmospheric measurements over urban or industrial areas aimed at assisting the air-quality monitoring attain increasing societal significance due to the strong and direct impact of aerosol pollutions in the low troposphere on the human health. In this chapter, we present experimental results on lidar mapping of aerosol fields over the city of Sofia (Bulgaria), its suburbs and adjacent towns and villages, obtained during an extensive 7-month experimental campaign in 2015. The measurements are conducted by scanning observation zones in horizontal and vertical directions using lidar systems developed at the Institute of Electronics, Bulgarian Academy of Sciences. Based on the aerosol backscattering profiles retrieved at different azimuth or elevation angles, two-dimensional color-coded sector maps of the near-surface aerosol density are obtained, overlaid on the topological map of the Sofia region. The analysis of the lidar maps shows good correlation between the aerosol density distribution and the locations of important sources of aerosol pollutions in the zones of observation, such as city streets with intense traffic, industrial facilities, densely populated residential districts, etc. The results reported demonstrate that aerosol lidar mapping could be regarded as an effective approach for accurate and reliable determination of the density, spatial distribution, and temporal dynamics of close-to-ground aerosols, covering broad urban areas. Possibilities of incorporating synergistically lidar mapping technologies into municipal air-quality monitoring systems are also discussed

    Lidar Mapping of Near-Surface Aerosol Fields

    Get PDF
    Near-surface atmospheric measurements over urban or industrial areas aimed at assisting the air-quality monitoring attain increasing societal significance due to the strong and direct impact of aerosol pollutions in the low troposphere on the human health. In this chapter, we present experimental results on lidar mapping of aerosol fields over the city of Sofia (Bulgaria), its suburbs and adjacent towns and villages, obtained during an extensive 7-month experimental campaign in 2015. The measurements are conducted by scanning observation zones in horizontal and vertical directions using lidar systems developed at the Institute of Electronics, Bulgarian Academy of Sciences. Based on the aerosol backscattering profiles retrieved at different azimuth or elevation angles, two-dimensional color-coded sector maps of the near-surface aerosol density are obtained, overlaid on the topological map of the Sofia region. The analysis of the lidar maps shows good correlation between the aerosol density distribution and the locations of important sources of aerosol pollutions in the zones of observation, such as city streets with intense traffic, industrial facilities, densely populated residential districts, etc. The results reported demonstrate that aerosol lidar mapping could be regarded as an effective approach for accurate and reliable determination of the density, spatial distribution, and temporal dynamics of close-to-ground aerosols, covering broad urban areas. Possibilities of incorporating synergistically lidar mapping technologies into municipal air-quality monitoring systems are also discussed

    Optical and Microphysical Properties of the Aerosol Field over Sofia, Bulgaria, Based on AERONET Sun-Photometer Measurements

    No full text
    An analysis of the optical and microphysical characteristics of aerosol passages over Sofia City, Bulgaria, was performed on the basis of data provided by the AErosol RObotic NETwork (AERONET). The data considered are the result of two nearly complete annual cycles of passive optical remote sensing of the atmosphere above the Sofia Site using a Cimel CE318-TS9 sun/sky/lunar photometer functioning since 5 May 2020. The values of the Aerosol Optical Depth (AOD) and the Ångström Exponent (AE) measured during each annual cycle and the overall two-year cycle exhibited similar statistics. The two-year mean AODs were 0.20 (±0.11) and 0.17 (±0.10) at the wavelengths of 440 nm (AOD440) and 500 nm, respectively. The two-year mean AEs at the wavelength pairs 440/870 nm (AE440/870) and 380/500 nm were 1.45 (±0.35) and 1.32 (±0.29). The AOD values obtained reach maxima in winter-to-spring and summer and were about two times smaller than those obtained 15 years ago using a hand-held Microtops II sun photometer. The AOD440 and AE440/870 frequency distributions outline two AOD and three AE modes, i.e., 3 × 2 groups of aerosol events identifiable using AOD–AE-based aerosol classifications, additional aerosol characteristics, and aerosol migration models. The aerosol load over the city was estimated to consist most frequently of urban (63.4%) aerosols. The relative occurrences of desert dust, biomass-burning aerosols, and mixed aerosols were, respectively, 8.0%, 9.1% and 19.5%

    Large-Scale Saharan Dust Episode in April 2019: Study of Desert Aerosol Loads over Sofia, Bulgaria, Using Remote Sensing, In Situ, and Modeling Resources

    No full text
    Emissions of immense amounts of desert dust into the atmosphere, spreading over vast geographical areas, are in direct feedback relation with ongoing global climate changes. An extreme large-scale Saharan dust episode occurred over Mediterranean and Europe in April 2019, driven by a dynamic blocking synoptic pattern (omega block) creating conditions for a powerful northeastward circulation of air masses rich in dust and moisture. Here, we study and characterize the effects of related dust intrusion over Sofia, Bulgaria, using lidar remote sensing combined with in situ measurements, satellite imagery, and modeling data. Optical and microphysical parameters of the desert aerosols were obtained and vertically profiled, namely, backscatter coefficients and backscatter-related Ångström exponents, as well as statistical distributions of the latter as qualitative analogs of the actual particle size distributions. Dynamical and topological features of the dust-dominated aerosol layers were determined. Height profiles of the aerosol/dust mass concentration were obtained by synergistic combining and calibrating lidar and in situ data. The comparison of the retrieved mass concentration profiles with the dust modeling ones shows a satisfactory compliance. The local meteorological conditions and the aerosol composition and structure of the troposphere above Sofia during the dust event were seriously affected by the desert air masses

    Optical and Microphysical Properties of the Aerosol Field over Sofia, Bulgaria, Based on AERONET Sun-Photometer Measurements

    No full text
    An analysis of the optical and microphysical characteristics of aerosol passages over Sofia City, Bulgaria, was performed on the basis of data provided by the AErosol RObotic NETwork (AERONET). The data considered are the result of two nearly complete annual cycles of passive optical remote sensing of the atmosphere above the Sofia Site using a Cimel CE318-TS9 sun/sky/lunar photometer functioning since 5 May 2020. The values of the Aerosol Optical Depth (AOD) and the Ångström Exponent (AE) measured during each annual cycle and the overall two-year cycle exhibited similar statistics. The two-year mean AODs were 0.20 (±0.11) and 0.17 (±0.10) at the wavelengths of 440 nm (AOD440) and 500 nm, respectively. The two-year mean AEs at the wavelength pairs 440/870 nm (AE440/870) and 380/500 nm were 1.45 (±0.35) and 1.32 (±0.29). The AOD values obtained reach maxima in winter-to-spring and summer and were about two times smaller than those obtained 15 years ago using a hand-held Microtops II sun photometer. The AOD440 and AE440/870 frequency distributions outline two AOD and three AE modes, i.e., 3 × 2 groups of aerosol events identifiable using AOD–AE-based aerosol classifications, additional aerosol characteristics, and aerosol migration models. The aerosol load over the city was estimated to consist most frequently of urban (63.4%) aerosols. The relative occurrences of desert dust, biomass-burning aerosols, and mixed aerosols were, respectively, 8.0%, 9.1% and 19.5%

    Large-Scale Saharan Dust Episode in April 2019: Study of Desert Aerosol Loads over Sofia, Bulgaria, Using Remote Sensing, In Situ, and Modeling Resources

    No full text
    Emissions of immense amounts of desert dust into the atmosphere, spreading over vast geographical areas, are in direct feedback relation with ongoing global climate changes. An extreme large-scale Saharan dust episode occurred over Mediterranean and Europe in April 2019, driven by a dynamic blocking synoptic pattern (omega block) creating conditions for a powerful northeastward circulation of air masses rich in dust and moisture. Here, we study and characterize the effects of related dust intrusion over Sofia, Bulgaria, using lidar remote sensing combined with in situ measurements, satellite imagery, and modeling data. Optical and microphysical parameters of the desert aerosols were obtained and vertically profiled, namely, backscatter coefficients and backscatter-related Ångström exponents, as well as statistical distributions of the latter as qualitative analogs of the actual particle size distributions. Dynamical and topological features of the dust-dominated aerosol layers were determined. Height profiles of the aerosol/dust mass concentration were obtained by synergistic combining and calibrating lidar and in situ data. The comparison of the retrieved mass concentration profiles with the dust modeling ones shows a satisfactory compliance. The local meteorological conditions and the aerosol composition and structure of the troposphere above Sofia during the dust event were seriously affected by the desert air masses

    >

    No full text

    >

    No full text
    corecore