7 research outputs found

    Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect

    Get PDF
    Magneto-optical effects in ferrimagnetic or ferromagnetic materials are usually too weak for potential applications. The transverse magneto-optical Kerr effect (TMOKE) in ferromagnetic films is typically on the order of 0.1%. Here, we demonstrate experimentally the enhancement of TMOKE due to the interaction of particle plasmons in gold nanowires with a photonic waveguide consisting of magneto- optical material, where hybrid waveguide-plasmon polaritons are excited. We achieve a large TMOKE that modulates the transmitted light intensity by 1.5%, accompanied by high transparency of the system. Our concept may lead to novel devices of miniaturized photonic circuits and switches, which are controllable by an external magnetic field

    Near-Field Dynamics of Optical Yagi-Uda Nanoantennas

    No full text
    We present near-field measurements of optical Yagi-Uda nanoantennas that are used in receiving mode. The eigenmode imaging of amplitude and phase by apertureless scanning near-field optical microscopy allows us to investigate the dynamics of the local out-of-plane electric field components and to visualize the temporal evolution of this time-harmonic reception process. The antenna directionality manifests itself by the dependence of the local field enhancement at the feed element on the illumination direction. Simulations taking into account the substrate confirm our observation of the directionality. Our work demonstrates the possibility to characterize multielement nanoantennas by electromagnetic antenna near-field scanners
    corecore