2,679 research outputs found

    Point-contact spectroscopy of the antiferromagnetic superconductor HoNi2B2C in the normal and superconducting state

    Full text link
    Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF) (T_N=5.2K) HoNi2B2C single crystals in the normal and two different superconducting (SC) states (T_c=8.5K and Tc∗=5.6K)arereported.ThePCstudyoftheelectron−boson(phonon)interaction(EB(P)I)spectralfunctionrevealspronouncedphononmaximaat16,22and34meV.Forthefirsttimethehighenergymaximaatabout50meVand100meVareresolved.Additionally,anadmixtureofacrystalline−electric−field(CEF)excitationswithamaximumnear10meVanda‘magnetic‘peaknear3meVareobserved.Thecontributionofthe10−meVpeakinPCEPIconstantλPCisevaluatedas20−30contributionofthehighenergymodesat50and100meVamountsabout10eachmaxima,sothesuperconductivitymightbeaffectedbyCEFexcitations.TheSCgapinHoNi2B2Cexhibitsastandardsingle−bandBCS−likedependence,butvanishesatT_c^*=5.6K) are reported. The PC study of the electron-boson(phonon) interaction (EB(P)I) spectral function reveals pronounced phonon maxima at 16, 22 and 34meV. For the first time the high energy maxima at about 50meV and 100meV are resolved. Additionally, an admixture of a crystalline-electric-field (CEF) excitations with a maximum near 10meV and a `magnetic` peak near 3meV are observed. The contribution of the 10-meV peak in PC EPI constant \lambda_PC is evaluated as 20-30%, while contribution of the high energy modes at 50 and 100meV amounts about 10% for each maxima, so the superconductivity might be affected by CEF excitations. The SC gap in HoNi2B2C exhibits a standard single-band BCS-like dependence, but vanishes at T_c^*=5.6K<T_c, with 2\Delta/kT_c^*=3.9. The strong coupling Eliashberg analysis of the low-temperature SC phase with T_c^*=5.6K =T_N, coexisting with the commensurate AF structure, suggests a sizable value of the EPI constant \lambda_s=0.93. We also provide strong support for the recently proposed by us ''Fermi surface (FS) separation'' scenario for the coexistence of magnetism and superconductivity in magnetic borocarbides, namely, that the superconductivity in the commensurate AF phase survives at a special (nearly isotropic) FS sheet without an admixture of Ho 5d states. Above T_c^* the SC features in the PC characteristics are strongly suppressed pointing to a specific weakened SC state between T_c* and T_c.Comment: 11 pages, 8 figs, to be published in PRB, Vol.75, Iss.2

    Internal structure of structurally stitched NCF preform

    Get PDF
    The paper addresses the experimental investigation of the unit cell architecture in a structurally stitched multilayer carbon-fibre preform. Each layer is a multiaxial multiply non-crimp fabric (NCF) knit with a non-structural stitching. The term “structural” presumes here that the stitching yarn does not only consolidate the plies (as the non-structural one does) but also forms a 3D reinforcement. One stitching technique — tufting — is studied, with 120 tex aramide yarn. The experimental data reveals a considerable irregularity of the piercing pattern and fibre distribution

    Sr2_2Cu(PO4_4)2_2: A real material realization of the 1D nearest neighbor Heisenberg chain

    Full text link
    We present evidence that crystalline Sr_2Cu(PO_4)_2 is a nearly perfect one-dimensional (1D) spin-1/2 anti-ferromagnetic Heisenberg model (AHM) chain compound with nearest neighbor only exchange. We undertake a broad theoretical study of the magnetic properties of this compound using first principles (LDA, LDA+U calculations), exact diagonalization and Bethe-ansatz methodologies to decompose the individual magnetic contributions, quantify their effect, and fit to experimental data. We calculate that the conditions of one-dimensionality and short-ranged magnetic interactions are sufficiently fulfilled that Bethe's analytical solution should be applicable, opening up the possibility to explore effects beyond the infinite chain limit of the AHM Hamiltonian. We begin such an exploration by examining some extrinsic effects such as impurities and defects

    Evaluation of multi-segmental kinematic modelling in the paediatric foot using three concurrent foot models

    Get PDF
    Background: Various foot models are used in the analysis of foot motion during gait and selection of the appropriate model can be difficult. The clinical utility of a model is dependent on the repeatability of the data as well as an understanding of the expected error in the process of data collection. Kinematic assessment of the paediatric foot is challenging and little is reported about multi-segment foot models in this population. The aim of this study was to examine three foot models and establish their concurrent test-retest repeatability in evaluation of paediatric foot motion during gait. Methods: 3DFoot, Kinfoot and the Oxford Foot Model (OFM) were applied concurrently to the right foot and lower limb of 14 children on two testing sessions. Angular data for foot segments were extracted at gait cycle events and peaks and compared between sessions by intraclass correlation coefficient (ICC) with 95% confidence intervals (95% CI) and standard error of measurement (SEM). Results: All foot models demonstrated moderate repeatability: OFM (ICC 0.55, 95% CI 0.16 to 0.77), 3DFoot (ICC 0.47, 95% CI 0.15 to 0.64) and Kinfoot (ICC 0.43, 95% CI −0.03 to 0.59). On the basis of a cut-off of 5°, acceptable mean error over repeated sessions was observed for OFM (SEM 4.61° ± 2.86°) and 3DFoot (SEM 3.88° ± 2.18°) but not for Kinfoot (SEM 5.08° ± 1.53°). Reliability of segmental kinematics varied, with low repeatability (ICC < 0.4) found for 14.3% of OFM angles, 22.7% of 3DFoot angles and 37.6% of Kinfoot angles. SEM greater than 5° was found in 26.2% of OFM, 15.2% of 3DFoot, and 43.8% of Kinfoot segmental angles. Conclusion: Findings from this work have demonstrated that segmental foot kinematics are repeatable in the paediatric foot but the level of repeatability and error varies across the segments of the different models. Information on repeatability and test-retest errors of three-dimensional foot models can better inform clinical assessment and advance understanding of foot motion during gait

    Current Understanding of the Impact of Childhood Obesity on the Foot and Lower Limb

    Get PDF
    Childhood obesity has emerged in recent years as a major public health problem. As this continues to concern across local, national and international populations, and as our understanding of obesity advances, access to multi-disciplinary care and understanding of the complications is warranted. Recent findings have suggested that the musculoskeletal system is one of the multiple body systems compromised by obesity and that aberrant biomechanical function may be a precursor to the onset of musculoskeletal symptoms. This review will consider childhood obesity and its impact on the paediatric foot and lower limb through examination of literature on foot structure and biomechanics of gait. An overview of evidence-based management is out with the context of this review, however some recommendations for clinical practice will be proposed
    • 

    corecore