117 research outputs found

    Gemcitabine with Cisplatin Versus Hepatic Arterial Infusion Pump Chemotherapy for Liver-Confined Unresectable Intrahepatic Cholangiocarcinoma

    Get PDF
    Background: A post-hoc analysis of ABC trials included 34 patients with liver-confined unresectable intrahepatic cholangiocarcinoma (iCCA) who received systemic chemotherapy with gemcitabine and cisplatin (gem-cis). The median overall survival (OS) was 16.7 months and the 3-year OS was 2.8%. The aim of this study was to compare patients treated with systemic gem-cis versus hepatic arterial infusion pump (HAIP) chemotherapy for liver-confined unresectable iCCA. Methods: We retrospectively collected consecutive patients with liver-confined unresectable iCCA who received gem-cis in two centers in the Netherlands to compare with consecutive patients who received HAIP chemotherapy with or without systemic chemotherapy in Memorial Sloan Kettering Cancer Center. Results: In total, 268 patients with liver-confined unresectable iCCA were included; 76 received gem-cis and 192 received HAIP chemotherapy. In the gem-cis group 42 patients (55.3%) had multifocal disease compared with 141 patients (73.4%) in the HAIP group (p = 0.023). Median OS for gem-cis was 11.8 months versus 27.7 months for HAIP chemotherapy (p &lt; 0.001). OS at 3 years was 3.5% (95% confidence interval [CI] 0.0–13.6%) in the gem-cis group versus 34.3% (95% CI 28.1–41.8%) in the HAIP chemotherapy group. After adjusting for male gender, performance status, baseline hepatobiliary disease, and multifocal disease, the hazard ratio (HR) for HAIP chemotherapy was 0.27 (95% CI 0.19–0.39). Conclusions: This study confirmed the results from the ABC trials that survival beyond 3 years is rare for patients with liver-confined unresectable iCCA treated with palliative gem-cis alone. With HAIP chemotherapy, one in three patients was alive at 3 years.</p

    Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells

    Get PDF
    Grb7 has potential importance in the progression of cancer. We have previously identified a novel peptide that binds to the SH2 domain of Grb7 and inhibits its association with several different receptor tyrosine kinases. We have synthesised the Grb7 peptide, G7-18NATE, with two different cell penetrating peptides, Penetratin and Tat. In this study, we have shown that both Penetratin- and Tat-conjugated G7-18NATE peptides are able to inhibit the proliferation of SK-BR-3, ZR-75-30, MDA-MB-361 and MDA-MB-231 breast cancer cells. There was no significant effects on breast cancer MCF-7cells, non-malignant MCF 10A or 3T3 cells. In addition, there was no significant inhibition of proliferation by Penetratin or Tat alone or by their conjugates with arbitrary peptide sequence in any of the cell lines tested. We determined the EC50 of G7-18NATE-P peptide for SK-BR-3 cell proliferation to be 7.663 × 10−6 M. Co-treatment of G7-18NATE-P peptide plus Doxorubicin in SK-BR-3 breast cancer cells resulted in an additional inhibition of proliferation, resulting in 56 and 84% decreases in the Doxorubicin EC50 value in the presence of 5 × 10−6 and 1.0 × 10−5 M G7-18NATE-P peptide, respectively. Importantly, the co-treatment with Doxorubicin and the delivery peptide did not change the Doxorubicin EC50. Since Grb7 associates with ErbB2, we assessed whether the peptide inhibitor would have a combined effect with a molecule that targets ErbB2, Herceptin. Co-treatment of Herceptin plus 1.0 × 10−5 M G7-18NATE-P peptide in SK-BR-3 cells resulted in a 46% decrease in the Herceptin EC50 value and no decrease following the co-treatment with Herceptin and penetratin alone. This Grb7 peptide has potential to be developed as a therapeutic agent alone, in combination with traditional chemotherapy, or in combination with other targeting molecules

    Reconstructing cancer genomes from paired-end sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data.</p> <p>Results</p> <p>By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i) a partition of the reference genome into intervals; (ii) adjacencies between these intervals in the cancer genome; (iii) an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO), to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B) cycles.</p> <p>Conclusions</p> <p>We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is available at <url>http://compbio.cs.brown.edu/software/</url>.</p

    HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.

    Get PDF
    Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC
    • …
    corecore