79 research outputs found

    Inflammatory cell distribution within and along asthmatic airways

    Get PDF
    Asthmatic airways are infiltrated with inflammatory cells that release mediators and cytokines into the microenvironment. In this study, we evaluated the distribution of CD45-positive leukocytes and eosinophils in lung tissue from five patients who died with severe asthma compared with five patients with cystic fibrosis. For morphometric analysis, the airway wall was partitioned into an 'inner' area (between basement membrane and smooth muscle) and an 'outer' area (between smooth muscle and alveolar attachments). Large airways (with a perimeter greater than 3.0 mm) from patients with asthma or cystic fibrosis had a greater density of CD45-positive cells (p < 0.05) and eosinophils (p < 0.001) in the inner airway region compared with the same airway region in small airways. Furthermore, in small airways, asthmatic lungs showed a greater density of CD45-positive cells (p < 0.01) and eosinophils (p < 0.01) in the outer compared with the inner airway wall region. These observations indicate that there are regional variations in inflammatory cell distribution within the airway wall in patients with asthma that are not observed in airways from patients with cystic fibrosis. We speculate that this inflammatory cell density in peripheral airways in severe asthma may relate to the peripheral airway obstruction characteristic of this condition

    Mechanical forces induce an asthma gene signature in healthy airway epithelial cells

    Get PDF
    Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature

    High Frequency Ventilation

    No full text

    International union of basic and clinical pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions

    No full text
    The seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes. Furthermore, other ligands interact with the leukotriene receptors. Finally, leukotrienes may also activate other receptor classes, such as purinergic receptors. The aim of this review is to provide an update on the pharmacology, expression patterns, and pathophysiological roles of the leukotriene receptors as well as the therapeutic developments in this area of research

    The lipoxin receptor ALX : potent ligand-specific and stereoselective actions in vivo

    No full text
    GPCR was initially referred to as the N-formylpeptide receptor-like 1. Although LXA(4) is the endogenous potent ligand for ALX activation, a number of peptides can also activate this receptor to stimulate calcium mobilization and chemotaxis in vitro. In contrast with LXA(4), the counterparts of many of these peptides in vivo remain to be established. The purpose of this review is to highlight the molecular characterization of the ALX receptor and provide an overview of the ALX-LXA(4) axis responsible for anti-inflammatory and proresolving signals in vivo. The information in this review provides further support for the initial nomenclature proposition for this GPCR as AL
    corecore