2,111 research outputs found

    BOUNDARY CONDITIONS FOR THE SCALAR FIELD IN THE PRESENCE OF SIGNATURE CHANGE

    Get PDF
    We show that, contrary to recent criticism, our previous work yields a reasonable class of solutions for the massless scalar field in the presence of signature change.Comment: 11 pages, Plain Tex, no figure

    Gravity and Signature Change

    Get PDF
    The use of proper ``time'' to describe classical ``spacetimes'' which contain both Euclidean and Lorentzian regions permits the introduction of smooth (generalized) orthonormal frames. This remarkable fact permits one to describe both a variational treatment of Einstein's equations and distribution theory using straightforward generalizations of the standard treatments for constant signature.Comment: Plain TeX, 6 pages; to appear in GR

    A New Look at the Ashtekar-Magnon Energy Condition

    Get PDF
    In 1975, Ashtekar and Magnon showed that an energy condition selects a unique quantization procedure for certain observers in general, curved spacetimes. We generalize this result in two important ways, by eliminating the need to assume a particular form for the (quantum) Hamiltonian, and by considering the surprisingly nontrivial extension to nonminimal coupling.Comment: REVTeX, 10 page

    Reply Comment: Comparison of Approaches to Classical Signature Change

    Full text link
    We contrast the two approaches to ``classical" signature change used by Hayward with the one used by us (Hellaby and Dray). There is (as yet) no rigorous derivation of appropriate distributional field equations. Hayward's distributional approach is based on a postulated modified form of the field equations. We make an alternative postulate. We point out an important difference between two possible philosophies of signature change --- ours is strictly classical, while Hayward's Lagrangian approach adopts what amounts to an imaginary proper ``time" on one side of the signature change, as is explicitly done in quantum cosmology. We also explain why we chose to use the Darmois-Israel type junction conditions, rather than the Lichnerowicz type junction conditions favoured by Hayward. We show that the difference in results is entirely explained by the difference in philosophy (imaginary versus real Euclidean ``time"), and not by the difference in approach to junction conditions (Lichnerowicz with specific coordinates versus Darmois with general coordinates).Comment: 10 pages, latex, no figures. Replying to - "Comment on `Failure of Standard Conservation Laws at a Classical Change of Signature'", S.A. Hayward, Phys. Rev. D52, 7331-7332 (1995) (gr-qc/9606045

    The Construction of Spinor Fields on Manifolds with Smooth Degenerate Metrics

    Full text link
    We examine some of the subtleties inherent in formulating a theory of spinors on a manifold with a smooth degenerate metric. We concentrate on the case where the metric is singular on a hypersurface that partitions the manifold into Lorentzian and Euclidean domains. We introduce the notion of a complex spinor fibration to make precise the meaning of continuity of a spinor field and give an expression for the components of a local spinor connection that is valid in the absence of a frame of local orthonormal vectors. These considerations enable one to construct a Dirac equation for the discussion of the behavior of spinors in the vicinity of the metric degeneracy. We conclude that the theory contains more freedom than the spacetime Dirac theory and we discuss some of the implications of this for the continuity of conserved currents.Comment: 24 pages, LaTeX (RevTeX 3.0, no figures), To appear in J. Math. Phy

    Quaternionic Spin

    Get PDF
    We rewrite the standard 4-dimensional Dirac equation in terms of quaternionic 2-component spinors, leading to a formalism which treats both massive and massless particles on an equal footing. The resulting unified description has the correct particle spectrum to be a generation of leptons, with the correct number of spin/helicity states. Furthermore, precisely three such generations naturally combine into an octonionic description of the 10-dimensional massless Dirac equation, as discussed in previous work.Comment: LaTeX2e, 15 pages, 1 PS figure; to appear in Clifford '99 proceeding

    Pair of null gravitating shells III. Algebra of Dirac's observables

    Full text link
    The study of the two-shell system started in ``Pair of null gravitating shells I and II'' (gr-qc/0112060--061) is continued. The pull back of the Liouville form to the constraint surface, which contains complete information about the Poisson brackets of Dirac observables, is computed in the singular double-null Eddington-Finkelstein (DNEF) gauge. The resulting formula shows that the variables conjugate to the Schwarzschild masses of the intershell spacetimes are simple combinations of the values of the DNEF coordinates on these spacetimes at the shells. The formula is valid for any number of in- and out-going shells. After applying it to the two-shell system, the symplectic form is calculated for each component of the physical phase space; regular coordinates are found, defining it as a symplectic manifold. The symplectic transformation between the initial and final values of observables for the shell-crossing case is written down.Comment: 26 pages, Latex file using amstex, some references correcte

    Actions for signature change

    Get PDF
    This is a contribution on the controversy about junction conditions for classical signature change. The central issue in this debate is whether the extrinsic curvature on slices near the hypersurface of signature change has to be continuous ({\it weak} signature change) or to vanish ({\it strong} signature change). Led by a Lagrangian point of view, we write down eight candidate action functionals S1S_1,\dots S8S_8 as possible generalizations of general relativity and investigate to what extent each of these defines a sensible variational problem, and which junction condition is implied. Four of the actions involve an integration over the total manifold. A particular subtlety arises from the precise definition of the Einstein-Hilbert Lagrangian density g1/2R[g]|g|^{1/2} R[g]. The other four actions are constructed as sums of integrals over singe-signature domains. The result is that {\it both} types of junction conditions occur in different models, i.e. are based on different first principles, none of which can be claimed to represent the ''correct'' one, unless physical predictions are taken into account. From a point of view of naturality dictated by the variational formalism, {\it weak} signature change is slightly favoured over {\it strong} one, because it requires less {\it \`a priori} restrictions for the class of off-shell metrics. In addition, a proposal for the use of the Lagrangian framework in cosmology is made.Comment: 36 pages, LaTeX, no figures; some corrections have been made, several Comments and further references are included and a note has been added

    Distributional Modes for Scalar Field Quantization

    Get PDF
    We propose a mode-sum formalism for the quantization of the scalar field based on distributional modes, which are naturally associated with a slight modification of the standard plane-wave modes. We show that this formalism leads to the standard Rindler temperature result, and that these modes can be canonically defined on any Cauchy surface.Comment: 15 pages, RevTe
    corecore